Differential effects of fentanyl and morphine on intracellular Ca2+ transients and contraction in rat ventricular myocytes. 1998

N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
Center for Anesthesiology Research, Cleveland Clinic Foundation, Ohio 44195, USA.

BACKGROUND Our objective was to elucidate the direct effects of fentanyl and morphine on cardiac excitation-contraction coupling using individual, field-stimulated rat ventricular myocytes. METHODS Freshly isolated myocytes were loaded with fura-2 and field stimulated (0.3 Hz) at 28 degrees C. Amplitude and timing of intracellular Ca2+ concentration (at a 340:380 ratio) and myocyte shortening (video edge detection) were monitored simultaneously in individual cells. Real time Ca2+ uptake into isolated sarcoplasmic reticulum vesicles was measured using fura-2 free acid in the extravesicular compartment. RESULTS The authors studied 120 cells from 30 rat hearts. Fentanyl (30-1,000 nM) caused dose-dependent decreases in peak intracellular Ca2+ concentration and shortening, whereas morphine (3-100 microM) decreased shortening without a concomitant decrease in the Ca2+ transient. Fentanyl prolonged the time to peak and to 50% recovery for shortening and the Ca2+ transient, whereas morphine only prolonged the timing parameters for shortening. Morphine (100 microM), but not fentanyl (1 microM), decreased the amount of Ca2+ released from intracellular stores in response to caffeine in intact cells, and it inhibited the rate of Ca2+ uptake in isolated sarcoplasmic reticulum vesicles. Fentanyl and morphine both caused a downward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on the Ca2+ transient. CONCLUSIONS Fentanyl and morphine directly depress cardiac excitation-contraction coupling at the cellular level. Fentanyl depresses myocardial contractility by decreasing the availability of intracellular Ca2+ and myofilament Ca2+ sensitivity. In contrast, morphine depresses myocardial contractility primarily by decreasing myofilament Ca2+ sensitivity.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005283 Fentanyl A potent narcotic analgesic, abuse of which leads to habituation or addiction. It is primarily a mu-opioid agonist. Fentanyl is also used as an adjunct to general anesthetics, and as an anesthetic for induction and maintenance. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1078) Phentanyl,Duragesic,Durogesic,Fentanest,Fentanyl Citrate,Fentora,R-4263,Sublimaze,Transmucosal Oral Fentanyl Citrate,R 4263,R4263
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
December 2002, Anesthesia and analgesia,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
March 1990, Circulation research,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
January 1997, The American journal of physiology,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
March 1996, The American journal of physiology,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
December 1996, Circulation research,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
September 1997, Cellular and molecular biology (Noisy-le-Grand, France),
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
June 2005, Anesthesiology,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
September 1993, The American journal of physiology,
N Kanaya, and D R Zakhary, and P A Murray, and D S Damron
January 1992, Heart and vessels,
Copied contents to your clipboard!