Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)? 1998

D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
Department of Biomedical Sciences, University of Bradford, UK.

The fate of the hair follicle pigmentary unit during the cyclical involution of anagen hair follicles is unknown. Using the C57BL/6 mouse model for hair research, hair follicle melanocytes were examined during the anagen-catagen transformation, comparing spontaneous and pharmacologically induced catagen development. This study shows that both spontaneous catagen and dexamethasone-induced catagen display similar changes in the pigmentary unit. Catagen hair follicles exhibited pigment incontinence in the dermal papilla and in selected outer root sheath keratinocytes. Melanocytes deleted by apoptosis were detected in spontaneous catagen and, more commonly, in dexamethasone-induced catagen, and were identified using transmission electron microscopy by the presence of free premelanosomes in affected cells lacking epithelial specializations, and by the colocalization of TUNEL positivity and tyrosinase-related protein-1 immunoreactivity. By contrast, cyclophosphamide-induced catagen was characterized by the initial retention of melanogenic and dendritic melanocytes in the presence of widespread keratinocyte apoptosis. Melanocyte incontinence and the ectopic distribution of melanin were more severe than in the other forms of catagen. Whereas much of this melanin was extruded, via the hair canal, to the skin surface, hair follicle-derived pigment was also detected within the epidermis, probably derived from pigment-carrying migrating outer root sheath keratinocytes from the proximal hair follicle. Thus, apoptosis may account, at least in part, for the loss of melanogenic melanocytes during spontaneous catagen. Although dexamethasone-induced catagen may provide a useful model for general hair pigmentation research, catagen induced by cyclophosphamide offers an interesting model for studying the response, and relative resistance, of melanocytes to chemical injury.

UI MeSH Term Description Entries
D008544 Melanocytes Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES. Melanocyte
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D006197 Hair A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body. Fetal Hair,Hair, Fetal,Lanugo,Fetal Hairs,Hairs,Hairs, Fetal
D000287 Administration, Topical The application of drug preparations to the surfaces of the body, especially the skin (ADMINISTRATION, CUTANEOUS) or mucous membranes. This method of treatment is used to avoid systemic side effects when high doses are required at a localized area or as an alternative systemic administration route, to avoid hepatic processing for example. Drug Administration, Topical,Administration, Topical Drug,Topical Administration,Topical Drug Administration,Administrations, Topical,Administrations, Topical Drug,Drug Administrations, Topical,Topical Administrations,Topical Drug Administrations
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating

Related Publications

D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
December 1997, The American journal of pathology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
March 1998, Archives of dermatological research,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
January 1970, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
January 2006, The American journal of pathology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
October 1997, Laboratory investigation; a journal of technical methods and pathology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
April 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
January 2003, The Journal of investigative dermatology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
December 2005, The Journal of investigative dermatology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
September 2011, Histochemistry and cell biology,
D J Tobin, and E Hagen, and V A Botchkarev, and R Paus
September 1998, The American journal of pathology,
Copied contents to your clipboard!