Insulin secretagogues activate the secretory granule receptor-like protein-tyrosine phosphatase IAR. 1998

L Cui, and W P Yu, and C J Pallen
Cell Regulation Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore.

To investigate the potential role of protein-tyrosine phosphatases (PTPs) in regulated secretion, cellular PTP activity was measured in pancreatic beta cell lines after exposure to insulin secretagogues. A peak of elevated PTP activity was detected in whole cell lysates after 15-20 min of treatment of the cells with high KCl, glucose, or TPA, which did not appear upon treatment with control compounds. Neither was it detected in cells that do not undergo regulated secretion. The PTP activation was transient, SDS-resistant, and localized to the cytoskeleton fraction of cells. The cytoskeletal localization of IAR, a receptor-like PTP associated with secretory granules of neuroendocrine cells, suggested the possibility that IAR is the secretagogue-activated PTP. The transient expression of human IAR in betaTC3 and HIT-T15 beta cells, followed by treatment with secretagogues or control compounds and immunoprecipitation of human IAR, showed that immunoprecipitates from the secretagogue-treated cells contained an elevated PTP activity. The secretagogue-induced activation of IAR had identical kinetics to that of the endogenous PTP. Although ectopic IAR was present in membrane and cytoskeletal fractions from the cells, only the cytoskeleton-associated IAR could be activated. Thus IAR represents the endogenous secretagogue-responsive PTP, or at least a component of it, and is one of the few receptor-like PTPs for which enzymatic activation has been demonstrated. Insulin secretion is detected prior to IAR activation, suggesting that IAR is not required for immediate secretion but likely plays a role in events downstream of insulin secretion or in another pathway related to the specialized function of secretory cells.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

L Cui, and W P Yu, and C J Pallen
July 1996, The Journal of biological chemistry,
L Cui, and W P Yu, and C J Pallen
January 1998, Advances in pharmacology (San Diego, Calif.),
L Cui, and W P Yu, and C J Pallen
August 1999, The European journal of neuroscience,
L Cui, and W P Yu, and C J Pallen
February 1998, The Journal of biological chemistry,
L Cui, and W P Yu, and C J Pallen
October 1996, Diabetes,
L Cui, and W P Yu, and C J Pallen
May 1998, Molecular and cellular biochemistry,
L Cui, and W P Yu, and C J Pallen
August 2013, The Journal of biological chemistry,
L Cui, and W P Yu, and C J Pallen
May 1989, Diabetologia,
Copied contents to your clipboard!