TGF-beta regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins. 1998

K Krieglstein, and L Farkas, and K Unsicker
Department of Anatomy and Cell Biology, University of Heidelberg, Germany.

We investigated putative roles of transforming growth factor (TGF)-beta expressed in peripheral ganglia in the regulation of neuronal cell survival during the period of ontogenetic neuron death (OD). The chick ciliary ganglion (CG), where OD occurs between embryonic days (E) 6 and 10, was employed as a model system. We show that CG neurons (E8) are immunoreactive (ir) for TGF-beta2 and -beta3 as well as the TGF-beta receptor TbetaR-II, but are not ir for TGF-beta1. Ciliary neurotrophic factor (CNTF) and fibroblast growth factor (FGF)-2, established neurotrophic molecules for CG neurons, up-regulate TGF-beta3 mRNA and TGF-beta biological activity in cultures of E8 CG neurons. None of the TGF-beta isoforms--beta1, beta2, or beta3--has a trophic, survival-promoting effect on cultured CG neurons. However, all isoforms enhance CG neuron survival mediated by CNTF or FGF-2, significantly and over a wide range of concentrations. In combination with the neurotrophins (NT) nerve growth factor (NGF) and NT-3, which are not neurotrophic for CG neurons, TGF-beta significantly promotes CG neuron survival. However, TGF-beta does not act synergistically with the neuropoietic cytokines oncostatin M, leukemia inhibiting factor, or interleukin-6. Immunoneutralization of endogenous TGF-beta released from CG neurons using an antibody to TGF-beta1/-beta2/-beta3 significantly reduces the potency of CNTF or FGF-2 to promote CG neuron survival. The blocking effect of the anti-pan-TGF-beta antibody could be rescued by adding exogenous TGF-beta. Together, these data suggest that para-/autocrine TGF-beta signaling has an important effect on the regulation of neuron survival in a model system of peripheral neurons.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias

Related Publications

K Krieglstein, and L Farkas, and K Unsicker
October 1994, Annals of medicine,
K Krieglstein, and L Farkas, and K Unsicker
January 1999, Acta neurochirurgica. Supplement,
K Krieglstein, and L Farkas, and K Unsicker
August 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Krieglstein, and L Farkas, and K Unsicker
May 1996, Brain research. Developmental brain research,
K Krieglstein, and L Farkas, and K Unsicker
January 1998, Neuroscience letters,
K Krieglstein, and L Farkas, and K Unsicker
January 2005, Neuroscience,
K Krieglstein, and L Farkas, and K Unsicker
January 2004, Neuroreport,
Copied contents to your clipboard!