Salt and water transport across the alveolar epithelium in the developing lung: correlations between function and recent molecular biology advances (Review). 1998

H G Folkesson, and A Norlin, and D L Baines
Department of Animal Physiology, Lund University, Sweden.

Significant progress have been made in understanding the mechanisms of alveolar fluid clearance at the time of birth and the transition from placental oxygenation to air breathing. During fetal life, the mammalian lung is a fluid filled secretory organ that fills no respiratory function. Its potential air spaces are filled with fluid that is actively secreted in response to an osmotic force generated by Cl(-)-secretion and the fluid-filled lung is necessary for a proper development of the air-breathing lung. As term approaches, net Cl(-)-secretion decreases, which is accompanied by a decreased secretion rate of the fluid into the air spaces. Concomitantly with the decreased Cl(-)-secretion, the alveolar epithelium begins to absorb Na+ to prepare for fluid absorption and the air breathing life. The causes for the decreased Cl(-)-secretion and the beginning of the Na+ absorption are not clear. Alterations in the hormonal milieu of the lung as well as changes in plasma stress hormone levels have been suggested to play roles. The switch from a placental oxygenation to pulmonary oxygenation requires that the fluid in the air spaces be rapidly removed from the lung lumen. Recent studies have demonstrated that removal of the alveolar fluid at birth is regulated via endogenous plasma epinephrine in the newborn. Molecular, cellular, and whole animal in vivo studies have demonstrated that fluid absorption at birth is related to expression and function of the epithelial sodium channel (ENaC). Several different in vivo and in vitro preparations have been used to investigate the mechanisms of alveolar fluid transport, primarily in adult lungs and have demonstrated that alveolar fluid absorption is driven by active Na+ transport. Both catecholamine-dependent and -independent regulatory mechanisms have been identified, probably acting on ENaC and other apical sodium channels and/or the basolaterally located Na+, K(+)-ATPase. Future studies are needed to integrate new insights to the molecular mechanisms behind fluid clearance with their function in both normal and pathological lungs.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D053503 Epithelial Sodium Channels Sodium channels found on salt-reabsorbing EPITHELIAL CELLS that line the distal NEPHRON; the distal COLON; SALIVARY DUCTS; SWEAT GLANDS; and the LUNG. They are AMILORIDE-sensitive and play a critical role in the control of sodium balance, BLOOD VOLUME, and BLOOD PRESSURE. Epithelial Sodium Channel,Epithelial Sodium Ion Channels,ENaC (Epithelial Na+ Channel),ENaC alpha,ENaC beta,ENaC delta,ENaC gamma,Epithelial Amiloride-Sensitive Sodium Channel,Epithelial Sodium Channel, alpha Subunit,Epithelial Sodium Channel, beta Subunit,Epithelial Sodium Channel, delta Subunit,Epithelial Sodium Channel, gamma Subunit,SCNN1 alpha Subunit,SCNN1 beta Subunit,SCNN1 delta Subunit,SCNN1 gamma Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, alpha Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, beta Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, delta Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, gamma Subunit,Epithelial Amiloride Sensitive Sodium Channel,Sodium Channel, Epithelial,Sodium Channels, Epithelial,alpha Subunit, SCNN1

Related Publications

H G Folkesson, and A Norlin, and D L Baines
May 1983, The American review of respiratory disease,
H G Folkesson, and A Norlin, and D L Baines
April 1996, The American journal of physiology,
H G Folkesson, and A Norlin, and D L Baines
August 2010, Respiratory physiology & neurobiology,
H G Folkesson, and A Norlin, and D L Baines
June 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
H G Folkesson, and A Norlin, and D L Baines
July 1990, Respiration physiology,
H G Folkesson, and A Norlin, and D L Baines
February 2012, Amino acids,
H G Folkesson, and A Norlin, and D L Baines
May 1966, Gastroenterology,
H G Folkesson, and A Norlin, and D L Baines
January 1976, Ciba Foundation symposium,
H G Folkesson, and A Norlin, and D L Baines
May 1994, Proceedings of the National Academy of Sciences of the United States of America,
H G Folkesson, and A Norlin, and D L Baines
May 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!