Differential expression of non-muscle myosin heavy chain genes during Xenopus embryogenesis. 1998

N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
Laboratory of Molecular Cardiology, National Heart Lung and Blood Institute, Bethesda, MD, USA.

Class II non-muscle myosins are implicated in diverse biological processes such as cytokinesis, cellularization, cell shape changes and gastrulation. Two distinct non-muscle myosin heavy chain genes have been reported in all vertebrates: non-muscle myosin heavy chain-A (NMHC-A) and -B (NMHC-B). We report here the isolation of the Xenopus homolog of NMHC-A and present a comparative analysis of the developmental and spatial expression patterns of NMHC-A and the previously isolated NMHC-B to address the role of NMHCs in Xenopus development. A 7.5 kb NMHC-A mRNA is present, maternally in unfertilized eggs and throughout embryogenesis, as well as in all adult tissues examined. An additional 8.3 kb zygotic transcript for NMHC-A is also detected, but only during embryonic stages. Whole mount in situ hybridization with tailbud stage embryos shows that NMHC-A mRNA is predominantly expressed in the epidermis, whereas NMHC-B mRNA is expressed in the somites, brain, eyes and branchial arches. Interestingly, the expression of NMHC-B in developing somites is gradually restricted to the center of each somite as differentiation proceeds. DAPI nuclear staining demonstrated that NMHC-B mRNA is colocalized with the nuclei or perinuclear area. In animal cap experiments, treatment with activin A or ectopic expression of Xbra and an activated form of Xlim1 markedly up-regulates NMHC-B as well as muscle actin mRNAs and slightly down-regulates NMHC-A mRNA, consistent with NMHC-B expression in the somitic muscle and NMHC-A expression in the epidermis.

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005326 Fetal Proteins Proteins that are preferentially expressed or upregulated during FETAL DEVELOPMENT. Fetoprotein,Fetoproteins,Proteins, Fetal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
February 1989, Development, growth & differentiation,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
June 1989, Developmental biology,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
November 1994, Circulation research,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
April 1995, Differentiation; research in biological diversity,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
August 2005, Developmental dynamics : an official publication of the American Association of Anatomists,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
March 2001, Mechanisms of development,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
February 1989, The Biochemical journal,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
October 2016, BMC developmental biology,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
April 1992, Journal of anatomy,
N Bhatia-Dey, and M Taira, and M A Conti, and H Nooruddin, and R S Adelstein
June 2006, International immunopharmacology,
Copied contents to your clipboard!