Genes of chicken MHC regulate the adherence activity of blood monocytes in Rous sarcomas progressing and regressing lines. 1998

K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
Institute for General and Experimental Pathology, University of Innsbruck, Austria. karel.hala@uibk.ac.at

The influence of the chicken major histocompatibility (B) complex (MHC) on the adherence potential of monocyte-derived macrophages was examined using the congenic chicken lines CB and CC. These lines represent well-defined genetic models for the study of resistance (CB) or susceptibility (CC) to the progressive growth of Rous sarcomas. Using a monoclonal antibody specific for chicken monocytes/macrophages, CB and CC chickens were shown by flow cytometry analyses to have similar proportions of peripheral blood monocytes. However, when the glass-adherence potential of these cells was compared during incubation in tissue culture medium over 24, 48 and 72 h at 40 degrees C, significant differences were seen between cells from these two inbred lines. After 24 and 48 h, glass-adherence by CB cells was 2-3 fold higher than that of CC cells. After 72 h this difference decreased to 1.5 fold. At 24 and 48 h, the adherent CB macrophages also appeared about 1.5 times larger than those of CC chickens. Genetic analysis using F1 hybrids (CBxCC) showed that this trait is regulated by a dominant gene that segregates with the B12 haplotype in the backcross generation F1xCC. From the results obtained with the recombinant congenic lines CB.R1 and CC.R1, we conclude that the gene regulating adherence potential is localized within the B-F/L region of the chicken MHC. About 50% of adherent cells were able to phagocytose opsonised FITC-labelled Zymosan particles. The level of nitric oxide production in vitro by CB and CC macrophages was equal. The importance of cells of the mononuclear phagocyte system for the response to Rous sarcoma virus (RSV) infection was studied in CB chickens using the anti-macrophage agents silica, carrageenan, and C12MDP, encapsulated in liposomes. In those chickens treated with silica and carrageenan, we observed progressive growth of RSV-induced tumors. The graft-versus-host reactivity of peripheral blood lymphocytes (PBL) of treated chickens was comparable to controls. In vitro nitric oxide production by macrophages from silica-treated chickens was higher than by macrophages from untreated controls.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008297 Male Males
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002351 Carrageenan A water-soluble extractive mixture of sulfated polysaccharides from RED ALGAE. Chief sources are the Irish moss CHONDRUS CRISPUS (Carrageen), and Gigartina stellata. It is used as a stabilizer, for suspending COCOA in chocolate manufacture, and to clarify BEVERAGES. Carrageenin,iota-Carrageenan,kappa-Carrageenan,lambda-Carrageenan,iota Carrageenan,kappa Carrageenan,lambda Carrageenan
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004002 Clodronic Acid A diphosphonate which affects calcium metabolism. It inhibits bone resorption and soft tissue calcification. Clodronate,Dichloromethylene Diphosphonate,Bonefos,Cl2MDP,Clodronate Disodium,Clodronate Sodium,Dichloromethane Diphosphonate,Dichloromethanediphosphonate,Dichloromethanediphosphonic Acid,Dichloromethylene Biphosphonate,Dichloromethylenebisphosphonate,Acid, Clodronic,Acid, Dichloromethanediphosphonic,Biphosphonate, Dichloromethylene,Diphosphonate, Dichloromethane,Diphosphonate, Dichloromethylene,Disodium, Clodronate,Sodium, Clodronate

Related Publications

K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
July 1977, Poultry science,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
February 1966, Journal of the National Cancer Institute,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
May 1987, European journal of immunology,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
August 1986, Journal of leukocyte biology,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
January 1976, Journal of immunology (Baltimore, Md. : 1950),
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
July 1968, Nature,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
January 1983, Immunogenetics,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
August 1977, Journal of the Reticuloendothelial Society,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
January 1978, International journal of cancer,
K Hala, and C Moore, and J Plachy, and B Kaspers, and G Böck, and A Hofmann
May 1982, Poultry science,
Copied contents to your clipboard!