Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of the concerted reduction of cytochromes f and b6. 1998

M V Ponamarev, and W A Cramer
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.

The 1.96 A structure of turnip cytochrome f revealed a linear internal chain of H2O molecules with the oxygen atoms of the chain having occupancies and "B" factors comparable to those of neighboring atoms [Martinez et al. (1996) Protein Sci. 5, 1081-1092. ]. Four waters extend 11 A from the heme toward Lys66 on the cytochrome surface. All residues that contribute an atom to the 15 H-bonds of five internal H2O molecules are essentially conserved in 23 cytochrome sequences. With only Gln and Asn side chains involved in H-bonding, the water chain resembles a "proton wire". The function of the conserved H2O chain was tested through site-directed mutagenesis of these Asn and Gln residues. Four of the five conserved Asn/Gln residues were changed in six mutants generated in the green alga, Chlamydomonas reinhardtii. Except for the N168F mutant, all grew photosynthetically. Although the rates of oxidation of cyt f oxidation and of reduction of cyt b6 (5-6 ms in the wild type) were not significantly affected, the rates of cyt f reduction and generation of the slow electrochromic band shift (Deltapsis) were markedly decreased, the half-times increasing to as much as 38 and 18 ms, respectively. Thus, in these mutants, reduction of cyt b6 reduction clearly precedes that of cyt f. Retardation of Deltapsis in the absence of an observable change in the rate of cyt b6 reduction implied that the rate of H+ translocation decreased in the mutants, and electron transfer was concomitantly retarded, most likely between the ISP and cyt f. The following was concluded: (i) proton and electron transfer are coupled in reduction of cyt f, and the cyt f water chain functions in H+ transfer; (ii) reduction of the high- and low-potential chains in the b6f complex is not concerted in the water chain mutants; and (iii) quinol deprotonation and electron transfer from reduced quinone are initiated by an early event, probably the movement of the ISP triggered by oxidation of cyt f.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D001937 Brassica A plant genus of the family Cruciferae. It contains many species and cultivars used as food including cabbage, cauliflower, broccoli, Brussel sprouts, kale, collard greens, MUSTARD PLANT; (B. alba, B. junica, and B. nigra), turnips (BRASSICA NAPUS) and rapeseed (BRASSICA RAPA). Broccoli,Brussel Sprout,Cabbage,Cauliflower,Collard Green,Kale,Cabbages,Collard Greens
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

M V Ponamarev, and W A Cramer
October 1987, Archives of biochemistry and biophysics,
M V Ponamarev, and W A Cramer
August 1993, Physiologia plantarum,
M V Ponamarev, and W A Cramer
September 1974, Biochimica et biophysica acta,
M V Ponamarev, and W A Cramer
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
M V Ponamarev, and W A Cramer
September 2022, Photosynthesis research,
M V Ponamarev, and W A Cramer
May 2016, Physical chemistry chemical physics : PCCP,
M V Ponamarev, and W A Cramer
January 2004, Methods in molecular biology (Clifton, N.J.),
M V Ponamarev, and W A Cramer
July 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M V Ponamarev, and W A Cramer
November 2003, Science (New York, N.Y.),
Copied contents to your clipboard!