Altered inotropic response of endothelin-1 in cardiomyocytes from rats with isoproterenol-induced cardiomyopathy. 1998

M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
Cardiology Section, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1045, USA.

OBJECTIVE The positive inotropic effect of endothelin-1 (ET-1) on normal myocardial contraction may be altered in pathological states. The purpose of this study was to assess the direct effect of ET-1 on cardiomyocyte performance and its cellular mechanism in congestive heart failure (CHF). METHODS We measured the plasma levels of ET-1 and compared the effects of ET-1 (10(-10)-10(-8) M) on contractile performance and the [Ca2+]i transient in the myocytes of left ventricles (LV) from 15 age-matched normal adult rats and 15 rats with isoproterenol (ISO)-induced CHF. RESULTS With CHF, the plasma levels of ET-1 (19.7 +/- 6.3 vs. 4.1 +/- 0.5 fmol/ml, p < 0.05) were markedly elevated. In normal myocytes, superfusion of ET-1 caused significant increases in the systolic amplitude (SA, 8-16%) and the peak velocity of shortening (dL/dtmax, 20-35%; p < 0.01) without causing a change in the peak [Ca2+]i transient. In contrast, in myocytes from CHF rats, ET-1 produced significant reductions in SA (9-13%) and in the velocity of relengthening, dR/dtmax (10-14%; p < 0.05). The myocytes' dR/dtmax also decreased by 8-10% (p < 0.05). These changes were associated with a significant decrease in the peak [Ca2+]i transient (20-23%, p < 0.01). These responses to ET-1 were abolished by the incubation of myocytes with an ETA receptor antagonist (BQ123) or a protein kinase C (PKC) inhibitor (H-7 or staurosporine). CONCLUSIONS ISO-induced CHF is associated with elevated plasma ET-1 and an altered cardiomyocyte response to ET-1. After CHF, ET-1 produces a direct depression of cardiomyocyte contractile performance that is associated with a significant decrease in the peak [Ca2+]i transient. These effects are likely to be mediated through ETA receptors and involve the PKC pathway.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
July 2000, British journal of pharmacology,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
January 2011, Proteomics,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
January 1982, Clinical and experimental hypertension. Part A, Theory and practice,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
October 2011, Toxicologic pathology,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
June 2001, Cardiovascular research,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
July 2001, European journal of pharmacology,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
April 1991, The Journal of pharmacology and experimental therapeutics,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
February 1992, Hypertension (Dallas, Tex. : 1979),
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
August 2001, American journal of physiology. Heart and circulatory physiology,
M Suzuki, and N Ohte, and Z M Wang, and D L Williams, and W C Little, and C P Cheng
August 2008, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!