Messenger ribonucleic acid metabolism in mammalian mitochondria. Discrete poly(adenylic acid) lacking messenger ribonucleic acid species associated with mitochondrial polysomes. 1976

F S Lewis, and R J Rutman, and N G Avadhani

The mRNA species released from mitochondrial polysomes prepared by the Mg2+ precipitation technique have been further characterized using various analytical techniques. Mitochondrial polysomes were dissociated by treatment with puromycin and chemically labeled with (3H) dimethyl sulfate. About 51% of steady-state mitochondrial mRNA bind to oligo(dT)-cellulose indicating the presence of poly(adenylic acid)(poly(A)) in this fraction. The poly(A)-containing mRNAs resolve into discrete bands of 9-16 Se, while the RNA fraction unable to bind to oligo(dT)-cellulose representing poly(A)-lacking mRNA contains 8-12 Se species. About 90% of poly(A) lacking RNA hybridizes with mitochondrial DNA and less than 7% hybridizes with nuclear DNA. The extent of hybridization of poly(A)-lacking RNA with mitochondrial DNA was not significantly affected by the presence of excess mitochondrial rRNA, cytoplasmic rRNA, or a tenfold concentration of poly(A)-containing RNA isolated from total mitochondrial RNA. Possible differences in sequence properties between poly(A)-containing and -lacking mitochondrial mRNAs were further verified using a solid phase-bound cDNA procedure. Poly(A)-containing mRNA released from mitochondrial polysomes shows over 85% sequance homology with oligo(dT)-cellulose-bound cDNA prepared against total mitochondrial poly(A)-lacking mitochondrial mRNA hybridizes with the cDNA providing direct evidence for the distinct sequence properties of the two mRNA species.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

F S Lewis, and R J Rutman, and N G Avadhani
June 1978, Biochimica et biophysica acta,
F S Lewis, and R J Rutman, and N G Avadhani
December 1974, Biochemistry,
F S Lewis, and R J Rutman, and N G Avadhani
June 1973, FEBS letters,
F S Lewis, and R J Rutman, and N G Avadhani
April 1973, Biochemical and biophysical research communications,
Copied contents to your clipboard!