Regulation of IFN-gamma production in granulocyte-macrophage colony-stimulating factor-deficient mice. 1998

Y Noguchi, and H Wada, and M W Marino, and L J Old
Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, USA.

Granulocyte-macrophage colony-stimulating factor-deficient (GM-CSF-/-) mice produce far lower serum levels of IFN-gamma in response to LPS than GM-CSF+/+ mice. CD4+ and CD8+ T cells from LPS-injected GM-CSF-/- mice showed a deficiency in IFN-gamma production and proliferative activity in response to IL-2 and IL-12, whereas IFN-gamma production by NK cells was not compromised. These defects of T cells were reversed by administration of GM-CSF in vivo, but not by supplementation with GM-CSF in vitro. GM-CSF-/- mice do not have an intrinsic defect in IFN-gamma production, because IL-12 injection induces the same high levels of IFN-gamma in GM-CSF-/- and GM-CSF+/+ mice. To investigate the inhibitory effect of LPS on GM-CSF-/- T cells and the indirect restorative activity of GM-CSF, we tested the action of supernatants from cultured dendritic cells (DC). A factor or factors in the DC supernatant normalized serum IFN-gamma levels and T cell responses in LPS-injected GM-CSF-/- mice. IL-18 reproduced some but not all of these in vivo and in vitro effects of DC supernatants. Our results indicate that GM-CSF is important in protecting T cells from inhibitory signals generated during immunization or exposure to LPS, and that this effect of GM-CSF is indirect and mediated by factors produced by DC.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017951 Antigen Presentation The process by which antigen is presented to lymphocytes in a form they can recognize. This is performed by antigen presenting cells (APCs). Some antigens require processing before they can be recognized. Antigen processing consists of ingestion and partial digestion of the antigen by the APC, followed by presentation of fragments on the cell surface. (From Rosen et al., Dictionary of Immunology, 1989) Antigen Processing,Antigen Presentations,Antigen Processings
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

Y Noguchi, and H Wada, and M W Marino, and L J Old
November 1990, Journal of immunology (Baltimore, Md. : 1950),
Y Noguchi, and H Wada, and M W Marino, and L J Old
February 1999, Biology of reproduction,
Y Noguchi, and H Wada, and M W Marino, and L J Old
March 2000, Biology of reproduction,
Y Noguchi, and H Wada, and M W Marino, and L J Old
January 1986, The Journal of molecular and cellular immunology : JMCI,
Y Noguchi, and H Wada, and M W Marino, and L J Old
August 1997, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!