Effect of pargyline on morphine tolerance and physical dependence development in mice. 1976

E T Iwamoto, and I K Ho, and E L Way

The effects of single and repeated pargyline administration on morphine antinociception in both naive and morphine-tolerant mice and on naloxone-precipitated withdrawal in morphine tolerant-dependent animals were investigated. Adult, male Swiss-Webster mice were rendered tolerant to and dependent on morphine by the s.c. pellet implantion technique. Morphine analgesia, as assessed by the tail-flick antinociceptive test, was potentiated in tolerant animals by acute adminstration of pargyline but antagonized by repeated pargyline administration; pargyline produced similar effects in non-tolerant mice and to the same relative degree. Repeated pargyline treatment during morphine pellet implantation enhanced the withdrawal jumping response precipitated by naloxone in dependent mice. Pargyline also, after a single injection, exacerbated jumping in mice undergoing abrupt withdrawal. Neither acute nor chronic pargyline administration altered the brain distribution of injected morphine in non-tolerant mice. It was concluded that pargyline may modify acute morphine actions and withdrawal without materially altering the process(es) involved in the development of tolerance and physical dependence.

UI MeSH Term Description Entries
D008297 Male Males
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009021 Morphine Dependence Strong dependence, both physiological and emotional, upon morphine. Morphine Abuse,Morphine Addiction,Abuse, Morphine,Addiction, Morphine,Dependence, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug

Related Publications

E T Iwamoto, and I K Ho, and E L Way
January 1982, Clinical and experimental pharmacology & physiology,
E T Iwamoto, and I K Ho, and E L Way
September 1975, Life sciences,
E T Iwamoto, and I K Ho, and E L Way
May 1979, The Journal of pharmacy and pharmacology,
E T Iwamoto, and I K Ho, and E L Way
December 2005, European journal of pharmacology,
E T Iwamoto, and I K Ho, and E L Way
September 2012, Phytotherapy research : PTR,
E T Iwamoto, and I K Ho, and E L Way
December 1978, Life sciences,
E T Iwamoto, and I K Ho, and E L Way
October 2004, Methods and findings in experimental and clinical pharmacology,
Copied contents to your clipboard!