Patch clamp study on mechanism of adenosine-induced inhibitory effects in frog pituitary melanotrophs. 1996

Y A Mei, and H Vaudry, and L Cazin
Department of Physiology, Shanghai Second Medical University, China.

Our laboratory demonstrated that adenosine inhibits the activation of adenylyl cyclase and the secretion of the alpha-melanocyte-stimulating hormone (alpha-MSH) from the intermediate lobe of the frog pituitary. This paper showed the bioelectric effects induced by adenosine, the ionic conductances modulated by adenosine, and the possible involvement of intracellular messengers, indicated the mechanism by which adenosine controls the secretion of alpha-MSH. The results show that adenosine acting on A1 adenosine receptor subtype reduced the Ca2+ influx necessary for the secretion, through 4 distinct mechanisms: 1) a hyperpolarization resulting from the activation of a voltage-insensitive K+ conductance, 2) a reduction of the duration of spontaneous action potentials due to an increase of the outward delayed rectifyer K+ current (lk), 3) a diminution of the cellular excitability by an activation of the transient outward K+ current (lA), and 4) an inhibition of the L- and N-type Ca2+ currents, with a predominant action on the N-type component. Cell dialysis with GTP gamma S rendered irreversible the effects of adenosine on the K+ conductances and Ca2+ channels, whereas PTX pretreatment totally abolished the response to adenosine, suggesting all bioelectric effects of adenosine were mediated by pertussis toxin-sensitive G proteins. Whether the implicated G proteins regulate the K+ and Ca2+ channels by tight-coupling or via a second-messenger system remains to be solved. With our results, the involvement of adenylyl cyclase can be excluded because addition of cAMP and IBMX, an inhibitor of phosphodiesterases, in the intracellular solution, or application of dibutyryl cAMP in the extracellular solution did not modify the adenosine-induced responses.

UI MeSH Term Description Entries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000521 alpha-MSH A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. MSH, alpha,alpha Intermedin,alpha-Melanocyte-Stimulating Hormone,(Des-Acetyl)-alpha-MSH,(Desacetyl)alpha-MSH,ACTH (1-13),ACTH (1-13)NH2,ACTH(1-13),Acetylated ACTH (1-13)NH2,Adrenocorticotropin (1-13)NH2,DE-alpha-MSH,Des-Acetyl MSH,Desacetyl alpha-MSH,Desacetyl alpha-Melanocyte-Stimulating Hormone,MSH, (Desacetyl)alpha-,alpha-Melanotropin,Desacetyl alpha MSH,Desacetyl alpha Melanocyte Stimulating Hormone,Hormone, Desacetyl alpha-Melanocyte-Stimulating,Hormone, alpha-Melanocyte-Stimulating,Intermedin, alpha,MSH, Des-Acetyl,alpha MSH,alpha Melanocyte Stimulating Hormone,alpha Melanotropin,alpha-MSH, Desacetyl,alpha-Melanocyte-Stimulating Hormone, Desacetyl
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018047 Receptors, Purinergic P1 A class of cell surface receptors that prefer ADENOSINE to other endogenous PURINES. Purinergic P1 receptors are widespread in the body including the cardiovascular, respiratory, immune, and nervous systems. There are at least two pharmacologically distinguishable types (A1 and A2, or Ri and Ra). Adenosine Receptors,P1 Purinoceptors,Purinergic P1 Receptors,Receptors, Adenosine,Adenosine Receptor,P1 Purinoceptor,Receptor, Purinergic P1,P1 Receptor, Purinergic,P1 Receptors, Purinergic,Purinergic P1 Receptor,Purinoceptor, P1,Purinoceptors, P1,Receptor, Adenosine
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

Y A Mei, and H Vaudry, and L Cazin
November 1987, British journal of pharmacology,
Y A Mei, and H Vaudry, and L Cazin
February 1995, Journal of molecular endocrinology,
Y A Mei, and H Vaudry, and L Cazin
May 1998, Annals of the New York Academy of Sciences,
Y A Mei, and H Vaudry, and L Cazin
January 1989, Neuroscience,
Y A Mei, and H Vaudry, and L Cazin
February 1998, The Journal of physiology,
Y A Mei, and H Vaudry, and L Cazin
January 1987, The Journal of membrane biology,
Y A Mei, and H Vaudry, and L Cazin
January 2000, Journal of neuroendocrinology,
Copied contents to your clipboard!