Evaluation of the Emu-pim-1 transgenic mouse model for short-term carcinogenicity testing. 1998

C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
Department of Carcinogenesis, Mutagenesis, and Genetics, National Institute of Public Health and the Environment, Bilthoven, The Netherlands. cf.van.kreyl@rivm.nl

The value of the chronic rodent carcinogenicity assay in adequately predicting cancer risk in humans has become a matter of debate over the past few years. Therefore, more rapid and accurate alternative tests are urgently needed. Transgenic mouse models, those harboring genetic changes that are relevant to the multistage cancer process, may provide such alternative tests. Transgenic Emu-pim-1 mice, developed by Berns and coworkers in 1989, contain the pimn-1 oncogene, which is expressed at elevated levels in their lymphoid compartments. As a result, these mice are predisposed to the development of T-cell lymphomas. Because of the low incidence of spontaneous tumors and the increased sensitivity to N-ethyl-N-nitrosourea-induced carcinogenesis, Emu-pim-1 mice were suggested to be one of the first potential and attractive candidates to be used in short-term carcinogenicity testing. In the present article, the results from 2 recent short-term assays (with mitomycin C and x-rays) are briefly presented, together with a review of all 11 performed bioassays and their corresponding histopathologic and molecular data. The overall results allow the first evaluation of the Emu-pim-1 mouse model with regard to its usefulness in short-term carcinogenicity testing. It has been shown that the model is primarily suitable as a sensitive short-term assay for genotoxic carcinogens that not only induce (at least) gene mutations and/or large deletions and rearrangements but that also sufficiently target the lymphoid system. However, the Emu-pim-1 mice lack sufficient sensitivity to justify their routine use in short-term carcinogenicity testing in general.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009381 Neoplasms, Radiation-Induced Tumors, cancer or other neoplasms produced by exposure to ionizing or non-ionizing radiation. Radiation-Induced Cancer,Cancer, Radiation-Induced,Radiation-Induced Neoplasms,Cancer, Radiation Induced,Cancers, Radiation-Induced,Neoplasm, Radiation-Induced,Neoplasms, Radiation Induced,Radiation Induced Cancer,Radiation Induced Neoplasms,Radiation-Induced Cancers,Radiation-Induced Neoplasm
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014916 Whole-Body Irradiation Irradiation of the whole body with ionizing or non-ionizing radiation. It is applicable to humans or animals but not to microorganisms. Radiation, Whole-Body,Total Body Irradiation,Irradiation, Total Body,Irradiation, Whole-Body,Whole-Body Radiation,Irradiation, Whole Body,Irradiations, Total Body,Irradiations, Whole-Body,Radiation, Whole Body,Radiations, Whole-Body,Total Body Irradiations,Whole Body Irradiation,Whole Body Radiation,Whole-Body Irradiations,Whole-Body Radiations
D015197 Carcinogenicity Tests Tests to experimentally measure the tumor-producing/cancer cell-producing potency of an agent by administering the agent (e.g., benzanthracenes) and observing the quantity of tumors or the cell transformation developed over a given period of time. The carcinogenicity value is usually measured as milligrams of agent administered per tumor developed. Though this test differs from the DNA-repair and bacterial microsome MUTAGENICITY TESTS, researchers often attempt to correlate the finding of carcinogenicity values and mutagenicity values. Tumorigenicity Tests,Carcinogen Tests,Carcinogenesis Tests,Carcinogenic Activity Tests,Carcinogenic Potency Tests,Carcinogen Test,Carcinogenesis Test,Carcinogenic Activity Test,Carcinogenic Potency Test,Carcinogenicity Test,Potency Test, Carcinogenic,Potency Tests, Carcinogenic,Test, Carcinogen,Test, Carcinogenesis,Test, Carcinogenic Activity,Test, Carcinogenic Potency,Test, Carcinogenicity,Test, Tumorigenicity,Tests, Carcinogen,Tests, Carcinogenesis,Tests, Carcinogenic Activity,Tests, Carcinogenic Potency,Tests, Carcinogenicity,Tests, Tumorigenicity,Tumorigenicity Test

Related Publications

C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
February 2008, Regulatory toxicology and pharmacology : RTP,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
July 1998, Mutation research,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
August 1974, Toxicology and applied pharmacology,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
February 1995, Carcinogenesis,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
January 2010, Toxicologic pathology,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
February 1997, Mutation research,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
November 1980, Archives of toxicology,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
January 1998, Toxicologic pathology,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
January 1992, IARC scientific publications,
C F van Kreijl, and C W van der Houven van Oordt, and E D Kroese, and I K Sørensen, and M L Breuer, and R D Storer
May 2002, Molecular carcinogenesis,
Copied contents to your clipboard!