Basic fibroblast growth factor and insulinlike growth factor I support the growth of human septal chondrocytes in a serum-free environment. 1998

B P Dunham, and R J Koch
Division of Otolaryngology-Head and Neck Surgery, Stanford University Medical Center, Calif 94305-5328, USA.

OBJECTIVE To determine if insulinlike growth factor I (IGF-I) and basic fibroblast growth factor (bFGF), individually or in combination, support the growth and viability of human septal chondrocytes in a serum-free medium (SFM) and a serum-enhanced culture medium. METHODS Chondrocytes were recovered from enzymatically digested human septal cartilage and were plated for monolayer culture in a newly developed medium. The medium included Dulbecco modified Eagle medium mixed 1:1 with Ham F12 medium and a supplement of known amounts of 2 growth factors-bFGF (100 ng/mL) and IGF-I (100 ng/mL)-used in combination and separately. RESULTS The combination of IGF-I and bFGF enhanced chondrocyte growth and maintained a high degree of viability in SFM and 10% fetal calf serum. After an initial lag, the SFM, augmented with both growth factors, produced a comparable number of viable cells (4.25+/-0.31 x 10(4)) to that of the medium with 10% fetal calf serum (4.64+/-0.35 x 10(4)) by the seventh day of the experiment. Combined with the 2 growth factors, 10% fetal calf serum provided the greatest proliferation by the end of the experiment. However, the overall mean cell counts for the IGF-I- and bFGF-enhanced SFM were not statistically different. CONCLUSIONS The combination of IGF-I and bFGF in a serum-free and a serum-supplemented environment supports the growth and viability of human septal chondrocytes in short-term culture. In an SFM, the results obtained approximate those produced in a medium enhanced with 10% fetal calf serum.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D009300 Nasal Septum The partition separating the two NASAL CAVITIES in the midplane. It is formed by the SEPTAL NASAL CARTILAGE, parts of skull bones (ETHMOID BONE; VOMER), and membranous parts. Nasal Septums,Septum, Nasal,Septums, Nasal
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018929 Cell Culture Techniques Methods for maintaining or growing CELLS in vitro. Cell Culture,Cell Culture Technique,Cell Cultures,Culture Technique, Cell,Culture Techniques, Cell
D019902 Chondrocytes Polymorphic cells that form cartilage. Chondroblasts,Chondroblast,Chondrocyte

Related Publications

B P Dunham, and R J Koch
January 2006, American journal of rhinology,
B P Dunham, and R J Koch
January 2005, Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban,
B P Dunham, and R J Koch
April 1992, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
B P Dunham, and R J Koch
February 1993, The Journal of bone and joint surgery. American volume,
B P Dunham, and R J Koch
February 2003, Journal of pediatric surgery,
B P Dunham, and R J Koch
November 2017, Molecular medicine reports,
Copied contents to your clipboard!