Effects of low-dose recombinant human insulin-like growth factor-I on insulin sensitivity, growth hormone and glucagon levels in young adults with insulin-dependent diabetes mellitus. 1998

C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
Department of Paediatrics, University of Oxford, John Radcliffe Hospital, UK.

Despite recent interest in the therapeutic potential of recombinant human insulin-like growth factor-I (rhIGF-I) in the treatment of diabetes mellitus, its mechanism of action is still not defined. We have studied the effects of low-dose bolus subcutaneous rhIGF-I (40 microg/kg and 20 microg/kg) on insulin sensitivity, growth hormone (GH) and glucagon levels in seven young adults with insulin-dependent diabetes mellitus (IDDM) using a randomized double-blind placebo-controlled crossover study design. Each was subjected to a euglycemic clamp (5 mmol/L) protocol consisting of a variable-rate insulin infusion clamp (6:00 PM to 8:00 AM) followed by a two-dose hyperinsulinemic clamp (insulin infusion of 0.75 mU x kg(-1) x min(-1) from 8 to 10 AM and 1.5 mU x kg(-1) x min(-1) from 10 AM to 12 noon) incorporating [6,6 2H2]glucose tracer for determination of glucose production/utilization rates. Following rhIGF-I administration, the serum IGF-I level (mean +/- SEM) increased (40 microg/kg, 655 +/- 90 ng/mL, P < .001; 20 microg/kg, 472 +/- 67 ng/mL, P < .001; placebo, 258 +/- 51 ng/mL). Dose-related reductions in insulin were observed during the period of steady-state euglycemia (1 AM to 8 AM) (40 microg/kg, 48 +/- 5 pmol/L, P = .01; 20 microg/kg, 58 +/- 8 pmol/L, P = .03; placebo, 72 +/- 8 pmol/L). The mean overnight GH level (40 microg/kg, 9.1 +/- 1.4 mU/L, P = .04; 20 microg/kg, 9.6 +/- 2.0 mU/L, P = .12; placebo, 11.3 +/- 1.7 mU/L) and GH pulse amplitude (40 microg/kg, 18.8 +/- 2.9 mU/L, P = .04; 20 microg/kg, 17.0 +/- 3.4 mU/L, P > .05; placebo, 23.0 +/- 3.7 mU/L) were also reduced. No differences in glucagon, IGF binding protein-1 (IGFBP-1), acetoacetate, or beta-hydroxybutyrate levels were found. During the hyperinsulinemic clamp conditions, no differences in glucose utilization were noted, whereas hepatic glucose production was reduced by rhIGF-I 40 microg/kg (P = .05). Our data demonstrate that in subjects with IDDM, low-dose subcutaneous rhIGF-I leads to a dose-dependent reduction in the insulin level for euglycemia overnight that parallels the decrease in overnight GH levels, but glucagon and IGFBP-1 levels remain unchanged. The decreases in hepatic glucose production during the hyperinsulinemic clamp study observed the following day are likely related to GH suppression, although a direct effect by rhIGF-I cannot be entirely discounted.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D004311 Double-Blind Method A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment. Double-Masked Study,Double-Blind Study,Double-Masked Method,Double Blind Method,Double Blind Study,Double Masked Method,Double Masked Study,Double-Blind Methods,Double-Blind Studies,Double-Masked Methods,Double-Masked Studies,Method, Double-Blind,Method, Double-Masked,Methods, Double-Blind,Methods, Double-Masked,Studies, Double-Blind,Studies, Double-Masked,Study, Double-Blind,Study, Double-Masked
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000090 Acetoacetates Salts and derivatives of acetoacetic acid.

Related Publications

C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
April 1994, Clinical endocrinology,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
July 1993, Diabetologia,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
January 1998, Metabolism: clinical and experimental,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
July 1996, Hormone research,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
September 2004, The Journal of clinical endocrinology and metabolism,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
March 1993, Acta paediatrica (Oslo, Norway : 1992). Supplement,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
June 1995, Acta paediatrica (Oslo, Norway : 1992),
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
December 1998, Clinical endocrinology,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
June 1995, Acta diabetologica,
C L Acerini, and D A Harris, and K A Matyka, and A P Watts, and A M Umpleby, and D L Russell-Jones, and D B Dunger
April 1997, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!