Improvement in motor performance of Weaver mutant mice following lesions of the cerebellum. 1998

C Grüsser, and U Grüsser-Cornehls
Freie Universität Berlin, FB Humanmedizin, Universitätsklinikum Benjamin Franklin, Department of Physiology, Germany.

In Weaver mutants (B6CBA wv/wv) cerebellar granule cells degenerate almost completely postnatally. A partial loss of Purkinje cells (PC) and a degeneration of dopaminergic cells in the substantia nigra have also been found. Weaver mice suffer from striking motor symptoms, including difficulty in walking without toppling over. In an attempt to influence the poor motor performance, the cerebellum in young animals was removed, thus eliminating the faulty output of surviving PCs, demonstrated electrophysiologically. Unoperated Weaver, lesioned wildtypes and one sham mouse were used as controls. Before and after operation, a battery of behavioural tests was performed. In Weaver mice, tumbling to the side (t) and the relation of t to the motor activity (k) while traversing an open-field matrix, (t/k), improved considerably, as did manoeuvring on a slanted wire mesh, but keeping balance on a wooden bench did not to the same degree. Locomotor activity alone improved in some animals. In wildtypes no significant changes occurred after operation, with the exception of a strong reduction in locomotor activity. The experiments demonstrate that the motor performance in Weaver mutant mice benefits from removal of their cerebellum.

UI MeSH Term Description Entries
D008297 Male Males
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C Grüsser, and U Grüsser-Cornehls
January 1987, Experimental brain research,
C Grüsser, and U Grüsser-Cornehls
November 1995, Neuroscience letters,
C Grüsser, and U Grüsser-Cornehls
July 1981, Journal of neurochemistry,
C Grüsser, and U Grüsser-Cornehls
September 1972, Developmental biology,
C Grüsser, and U Grüsser-Cornehls
June 1994, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
C Grüsser, and U Grüsser-Cornehls
September 1998, Brain research. Developmental brain research,
C Grüsser, and U Grüsser-Cornehls
July 1994, Neurochemical research,
C Grüsser, and U Grüsser-Cornehls
January 1981, Journal of supramolecular structure and cellular biochemistry,
C Grüsser, and U Grüsser-Cornehls
November 1986, Brain research,
Copied contents to your clipboard!