Molecular cloning and expression of two novel zebrafish semaphorins. 1998

M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
Department of Biology, University of Michigan, Ann Arbor, MI 48109- 1048, USA.

The large, conserved semaphorin/collapsin gene family encodes putative axon guidance molecules. We describe the cloning and expression of two n ovel zebrafish semaphorins that represent an increase in the size and diversity of the family. These semaphorins are expressed in unique and dynamic patterns during development.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001934 Branchial Region A region, of SOMITE development period, that contains a number of paired arches, each with a mesodermal core lined by ectoderm and endoderm on the two sides. In lower aquatic vertebrates, branchial arches develop into GILLS. In higher vertebrates, the arches forms outpouchings and develop into structures of the head and neck. Separating the arches are the branchial clefts or grooves. Branchial Arches,Branchial Clefts,Pharyngeal Arches,Visceral Arches,Branchial Arch,Branchial Grooves,Pharyngeal Arch,Pharyngeal Clefts,Pharyngeal Grooves,Visceral Arch,Arch, Branchial,Arch, Pharyngeal,Arch, Visceral,Arches, Branchial,Arches, Pharyngeal,Arches, Visceral,Archs, Pharyngeal,Branchial Cleft,Branchial Groove,Branchial Regions,Cleft, Branchial,Cleft, Pharyngeal,Clefts, Branchial,Clefts, Pharyngeal,Groove, Branchial,Groove, Pharyngeal,Grooves, Branchial,Grooves, Pharyngeal,Pharyngeal Archs,Pharyngeal Cleft,Pharyngeal Groove,Region, Branchial,Regions, Branchial
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
January 2003, Biochemical and biophysical research communications,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
December 2000, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
August 2004, DNA sequence : the journal of DNA sequencing and mapping,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
January 2012, Gene expression patterns : GEP,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
August 2005, Gene expression patterns : GEP,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
July 2009, Genetics and molecular biology,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
November 2005, Developmental dynamics : an official publication of the American Association of Anatomists,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
April 1999, Brain research bulletin,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
April 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire,
M C Halloran, and S M Severance, and C S Yee, and D L Gemza, and J Y Kuwada
June 2006, Molecular biology reports,
Copied contents to your clipboard!