Dose perturbation caused by high-density inhomogeneities in small beams in stereotactic radiosurgery. 1998

S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
Department of Radiology, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH 44109, USA.

The influence of high-density tissue heterogeneities in small-diameter beams used in stereotactic radiosurgery has been investigated. Dose perturbation immediately behind aluminium sheets, used to simulate a high-density tissue inhomogeneity such as bone, was studied in a solid water phantom. Dose reduction factors (DRFs), which are the ratios of the dose in the presence of the inhomogeneity to dose in a uniform density solid water phantom, were measured with a diamond detector for three thicknesses of aluminium. DRFs exhibit dependence on both the inhomogeneity thickness and the beam diameter. The DRF decreases with inhomogeneity thickness. The DRF initially decreases with increase in the beam diameter from 12.5 to 25 mm. For fields greater than 25 mm, the DRFs are nearly constant. The commonly used algorithms such as the TAR ratio method underestimate the magnitude of the measured effect. A good agreement between these measurements and Monte Carlo calculations is obtained. The influence of the high-density inhomogeneity on the tissue maximum ratio (TMR) was also measured with the inhomogeneity at a fixed depth dmax from the entrance surface. The TMR is reduced for all detector-inhomogeneity distances investigated. The dose build-up phenomenon observed in the presence of low-density air inhomogeneity is absent in the presence of a high-density inhomogeneity. The beam width (defined by 50% dose points) immediately beyond the inhomogeneity is unaffected by the high-density inhomogeneity. However, the 90%-10% and 80%-20% dose penumbra widths and the dose outside the beam edge (beyond the 50% dose point) are reduced. This reduction in dose outside the beam edge is caused by the reduced range of the secondary radiation (photons and electrons) in the high-density medium.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D016634 Radiosurgery A radiological stereotactic technique developed for cutting or destroying tissue by high doses of radiation in place of surgical incisions. It was originally developed for neurosurgery on structures in the brain and its use gradually spread to radiation surgery on extracranial structures as well. The usual rigid needles or probes of stereotactic surgery are replaced with beams of ionizing radiation directed toward a target so as to achieve local tissue destruction. Gamma Knife Radiosurgery,Linear Accelerator Radiosurgery,Stereotactic Body Radiotherapy,Stereotactic Radiosurgery,CyberKnife Radiosurgery,LINAC Radiosurgery,Radiosurgery, Gamma Knife,Radiosurgery, Linear Accelerator,Radiosurgery, Stereotactic,Stereotactic Radiation,Stereotactic Radiation Therapy,CyberKnife Radiosurgeries,Gamma Knife Radiosurgeries,LINAC Radiosurgeries,Linear Accelerator Radiosurgeries,Radiation Therapy, Stereotactic,Radiation, Stereotactic,Radiosurgery, CyberKnife,Radiosurgery, LINAC,Radiotherapy, Stereotactic Body,Stereotactic Body Radiotherapies,Stereotactic Radiation Therapies,Stereotactic Radiations,Stereotactic Radiosurgeries,Therapy, Stereotactic Radiation
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
September 2014, Medical physics,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
November 2013, Physics in medicine and biology,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
December 2013, Radiation oncology journal,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
January 2013, Progress in neurological surgery,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
April 1999, Neurosurgery clinics of North America,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
January 2007, Progress in neurological surgery,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
November 2009, Medical physics,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
April 2003, Technology in cancer research & treatment,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
July 1994, Medical physics,
S N Rustgi, and A K Rustgi, and S B Jiang, and K M Ayyangar
June 2011, Journal of neurosurgery,
Copied contents to your clipboard!