Initial recombination in a parallel-plate ionization chamber exposed to heavy ions. 1998

T Kanai, and M Sudo, and N Matsufuji, and Y Futami
Therapeutic Beam Assessment Office, Research Center of Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan. kanai@nirs.go.jp

For exact determination of absorbed dose in heavy-ion irradiation fields which are used in radiation therapy and biological experiments, ionization chambers have been characterized with defined heavy-ion beams and correction factors. The LET (linear energy transfer) dependence of columnar recombination in a parallel-plate ionization chamber has been examined. Using 135 MeV/u carbon and neon beams, the ion collection efficiency was measured for several gases (air, carbon dioxide, argon and tissue-equivalent gas). 95 MeV/u argon beams and 90 MeV/u iron beams were also used for measurements of columnar recombination in air. As expected by Jaffe theory, the inverse of the ratio of the ionization charge to the saturated ionization charge had a linear relationship with the inverse of the electric field strength in the region below 0.002 V(-1) cm. The gradient of the line increases as the LET of the heavy ions increases. A strong LET dependence of the gradient was observed in air and carbon dioxide. The LET dependence was not observed in tissue-equivalent gas, nitrogen or argon. The exact depth-dose distribution of the heavy-ion beam was obtained by this correction of the initial recombination effect for the collected ionization charge. The columnar recombination in air was analysed using Jaffe theory; the obtained parameter b (a track radius) should be in the range between 0.001 cm and 0.005 cm, whereas the value obtained by Jaffe is 0.00179 cm. The value of the parameter b should increase as the LET of the heavy-ion beam increases in order to reproduce the experimental values of the initial recombination.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000388 Air The mixture of gases present in the earth's atmosphere consisting of oxygen, nitrogen, carbon dioxide, and small amounts of other gases.

Related Publications

T Kanai, and M Sudo, and N Matsufuji, and Y Futami
June 1994, Physics in medicine and biology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
August 2005, Physics in medicine and biology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
April 1969, Physics in medicine and biology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
December 1961, The British journal of radiology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
January 1988, Medical physics,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
June 2004, IEEE transactions on nanobioscience,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
December 2022, Physics in medicine and biology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
October 2006, Physics in medicine and biology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
October 1973, Radiology,
T Kanai, and M Sudo, and N Matsufuji, and Y Futami
August 1998, Physics in medicine and biology,
Copied contents to your clipboard!