| D007814 |
Larva |
Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. |
Maggots,Tadpoles,Larvae,Maggot,Tadpole |
|
| D008854 |
Microscopy, Electron |
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. |
Electron Microscopy |
|
| D008871 |
Microvilli |
Minute projections of cell membranes which greatly increase the surface area of the cell. |
Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders |
|
| D008928 |
Mitochondria |
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) |
Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions |
|
| D009924 |
Organ Culture Techniques |
A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) |
Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures |
|
| D003594 |
Cytoplasmic Granules |
Condensed areas of cellular material that may be bounded by a membrane. |
Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic |
|
| D004331 |
Drosophila melanogaster |
A species of fruit fly frequently used in genetics because of the large size of its chromosomes. |
D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila |
|
| D004440 |
Ecdysone |
A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. |
Molting Hormone |
|
| D004441 |
Ecdysterone |
A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. |
20-Hydroxyecdysone,Beta-Ecdysone,Crustecdysone,20 Hydroxyecdysone,Beta Ecdysone |
|
| D006056 |
Golgi Apparatus |
A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) |
Golgi Complex,Apparatus, Golgi,Complex, Golgi |
|