In vivo and in vitro responses to poly(ethylene terephthalate-co-diethylene glycol terephthalate) and polyethylene oxide blends. 1998

I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
Departamento de Quimica, Universidade Federal de Santa Catarina, Brazil.

Although biocompatible polymeric compounds are generally nontoxic, nonimmunogenic, and chemically inert, implants made from these materials may trigger acute and chronic inflammatory responses. These inflammatory reactions may induce degeneration of implanted biopolymer. Interactions between implanted biomaterial and inflammatory cells are mediated by many cellular events involving cellular adhesion and activation. We studied the inflammatory responses in vivo and in vitro to samples of biopolymers composed of poly(ethylene terephthalate-co-diethylene glycol terephthalate) plus 0, 5, 25% of polyethylene oxide. We observed that these biopolymers did not induce inflammatory responses when implanted in the peritoneal cavity of mice for 28 days. However we observed deposition of hyaluronic acid at the surface of implanted biomaterial, suggesting that tolerance to biomaterial occurred after surgical implantation. No significant adhesion of inflammatory cells such as mononuclear phagocytes and peripheral leukocytes were observed in vitro, when poly(ethylene terephthalate-co-diethylene glycol terephthalate) blends were used as substratum to cellular adhesion. These results suggest that blends composed of poly(ethylene terephthalate-co-diethylene glycol terephthalate) induce low inflammatory cell adhesion, since no rejection of biopolymer was observed when implanted in experimental animal models.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011093 Polyethylene Terephthalates Polyester polymers formed from terephthalic acid or its esters and ethylene glycol. They can be formed into tapes, films or pulled into fibers that are pressed into meshes or woven into fabrics. Dacron,Nalophan,PET Polymer,Poly(Ethylene Terephtalate),Polyethylene Terephthalate,Tedlar,Dacrons,Nalophans,PET Polymers,Tedlars,Terephthalate, Polyethylene,Terephthalates, Polyethylene
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
January 2021, Polymers,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
September 2022, Journal of biomedical materials research. Part B, Applied biomaterials,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
May 2010, Bioresource technology,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
January 2004, Biomaterials,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
November 1998, Journal of biomedical materials research,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
December 2005, The European physical journal. E, Soft matter,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
July 1991, Journal of biomedical materials research,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
July 1999, Journal of biomedical materials research,
I O Barcellos, and S G Carobrez, and A T Pires, and M Alvarez-Silva
January 1978, Clinical toxicology,
Copied contents to your clipboard!