A frequency-dependent saturation evident in rate-intensity functions of the chinchilla auditory nerve. 1998

B S Jackson, and E M Relkin
Institute for Sensory Research and Department of Bioengineering and Neuroscience, Syracuse University, NY 13244-5290, USA.

The shape of rate-intensity functions recorded from individual neurons of the auditory nerve using stimulus frequencies at and below the characteristic frequency have been both well-characterized and modeled by other researchers. However, previous studies of rate-intensity functions using stimulus frequencies above the characteristic frequency have primarily focused on the slopes of the rising phases of the functions. Hence, they did not determine whether rate-intensity functions recorded using stimulus frequencies above the characteristic frequency saturate, and, if so, at what firing rates the saturation occurs. In this study, rate-intensity functions have been obtained from neurons of the eighth nerve of the chinchilla in response to gated, sinusoidal stimuli in order to investigate saturation firing rates for frequencies above the characteristic frequency. For each neuron, rate-intensity functions were obtained for stimulus intensities up to 90 dB SPL at the characteristic frequency and at as many frequencies above the characteristic frequency as time would allow. These data clearly reveal that, for frequencies above the characteristic frequency, saturation occurs at a rate that decreases monotonically as the frequency of stimulation is increased. In addition, an empirical equation is given which summarizes the dependence of saturation on stimulus frequency for the data of this study.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002682 Chinchilla A genus of the family Chinchillidae which consists of three species: C. brevicaudata, C. lanigera, and C. villidera. They are used extensively in biomedical research. Chinchillas
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B S Jackson, and E M Relkin
April 2000, The Journal of the Acoustical Society of America,
B S Jackson, and E M Relkin
May 1998, Hearing research,
B S Jackson, and E M Relkin
October 1998, Hearing research,
B S Jackson, and E M Relkin
June 1983, The Journal of the Acoustical Society of America,
B S Jackson, and E M Relkin
November 1987, The Journal of the Acoustical Society of America,
B S Jackson, and E M Relkin
May 1989, The Journal of the Acoustical Society of America,
B S Jackson, and E M Relkin
May 1988, The Journal of the Acoustical Society of America,
B S Jackson, and E M Relkin
July 2008, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!