Domain-specific interactions between the p185(neu) and epidermal growth factor receptor kinases determine differential signaling outcomes. 1999

X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

We expressed the epidermal growth factor receptor (EGFR) along with mutant p185(neu) proteins containing the rat transmembrane point mutation. The work concerned the study of the contributions made by various p185(neu) subdomains to signaling induced by a heterodimeric ErbB complex. Co-expression of full-length EGFR and oncogenic p185(neu) receptors resulted in an increased EGF-induced phosphotyrosine content of p185(neu), increased cell proliferation to limiting concentrations of EGF, and increases in both EGF-induced MAPK and phosphatidylinositol 3-kinase (PI 3-kinase) activation. Intracellular domain-deleted p185(neu) receptors (T691stop neu) were able to associate with full-length EGFR, but induced antagonistic effects on EGF-dependent EGF receptor down-regulation, cell proliferation, and activation of MAPK and PI 3-kinase pathways. Ectodomain-deleted p185(neu) proteins (TDelta5) were unable to physically associate with EGFR, and extracellular domain-deleted p185(neu) forms failed to augment activation of MAPK and PI 3-kinase in response to EGF. Association of EGFR with a carboxyl-terminally truncated p185(neu) mutant (TAPstop) form did not increase transforming efficiency and phosphotyrosine content of the TAPstop species, and proliferation of EGFR.TAPstop-co-expressing cells in response to EGF was similar to cells containing EGFR only. Thus, neither cooperative nor inhibitory effects were observed in cell lines co-expressing either TDelta5 or TAPstop mutant proteins. Unlike the formation of potent homodimer assemblies composed of oncogenic p185(neu), the induction of signaling from p185(neu).EGFR heteroreceptor assemblies requires the ectodomain for ligand-dependent physical association and intracellular domain contacts for efficient intermolecular kinase activation.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018719 Receptor, ErbB-2 A cell surface protein-tyrosine kinase receptor that is overexpressed in a variety of ADENOCARCINOMAS. It has extensive homology to and heterodimerizes with the EGF RECEPTOR, the ERBB-3 RECEPTOR, and the ERBB-4 RECEPTOR. Activation of the erbB-2 receptor occurs through heterodimer formation with a ligand-bound erbB receptor family member. HER-2 Proto-Oncogene Protein,Proto-Oncogene Protein HER-2,Proto-Oncogene Protein p185(neu),c-erbB-2 Protein,erbB-2 Proto-Oncogene Protein,erbB-2 Receptor Protein-Tyrosine Kinase,neu Proto-Oncogene Protein,Antigens, CD340,CD340 Antigen,Erb-b2 Receptor Tyrosine Kinases,Metastatic Lymph Node Gene 19 Protein,Neu Receptor,Oncogene Protein HER-2,Proto-Oncogene Proteins c-erbB-2,Proto-oncogene Protein Neu,Receptor, Neu,Receptors, erbB-2,Tyrosine Kinase-type Cell Surface Receptor HER2,p185(c-neu),p185erbB2 Protein,CD340 Antigens,Erb b2 Receptor Tyrosine Kinases,ErbB-2 Receptor,HER 2 Proto Oncogene Protein,Oncogene Protein HER 2,Proto Oncogene Protein HER 2,Proto Oncogene Proteins c erbB 2,Proto-Oncogene Protein, HER-2,Proto-Oncogene Protein, erbB-2,Proto-Oncogene Protein, neu,Tyrosine Kinase type Cell Surface Receptor HER2,c erbB 2 Protein,erbB 2 Proto Oncogene Protein,erbB 2 Receptor Protein Tyrosine Kinase,erbB-2 Receptors,neu Proto Oncogene Protein
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations
D019556 COS Cells CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CHLOROCEBUS AETHIOPS).) COS-1 Cells,COS-7 Cells,COS 1 Cells,COS 7 Cells,COS Cell,COS-1 Cell,COS-7 Cell,Cell, COS,Cell, COS-1,Cell, COS-7,Cells, COS,Cells, COS-1,Cells, COS-7

Related Publications

X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
May 1996, The EMBO journal,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
February 1995, The Journal of biological chemistry,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
January 1991, The Journal of biological chemistry,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
February 1993, Biochemical and biophysical research communications,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
February 2005, Cancer,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
February 1992, Proceedings of the National Academy of Sciences of the United States of America,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
October 2003, Experimental cell research,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
March 2012, Molecular and cellular endocrinology,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
July 1995, Oncogene,
X Qian, and D M O'Rourke, and Z Fei, and H T Zhang, and C C Kao, and M I Greene
June 1996, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!