Kinetic analysis of tentoxin binding to chloroplast F1-ATPase. A model for the overactivation process. 1999

J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique-Saclay, F-91191 Gif-sur-Yvette Cedex, France. santo@dsvidf.cea.fr

The mechanism of action of tentoxin on the soluble part (chloroplast F1 H+-ATPase; CF1) of chloroplast ATP synthase was analyzed in the light of new kinetic and equilibrium experiments. Investigations were done regarding the functional state of the enzyme (activation, bound nucleotide, catalytic turnover). Dialysis and binding data, obtained with 14C-tentoxin, fully confirmed the existence of two tentoxin binding sites of distinct dissociation constants consistent with the observed Kinhibition and Koveractivation. This strongly supports a two-site model of tentoxin action on CF1. Kinetic and thermodynamic parameters of tentoxin binding to the first site (Ki = 10 nM; kon = 4.7 x 10(4) s-1.M-1) were determined from time-resolved activity assays. Tentoxin binding to the high affinity site was found independent on the catalytic state of the enzyme. The analysis of the kinetics of tentoxin binding on the low affinity site of the enzyme showed strong evidence for an interaction between this site and the nucleotide binding sites and revealed a complex relationship between the catalytic state and the reactivation process. New catalytic states of CF1 devoid of epsilon-subunit were detected: a transient overstimulated state, and a dead end complex unable to bind a second tentoxin molecule. Our experiments led to a kinetic model for the reactivation phenomenon for which rate constants were determined. The implications of this model are discussed in relation to the previous mechanistic hypotheses on the effect of tentoxin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009183 Mycotoxins Toxic compounds produced by FUNGI. Fungal Toxins,Mycotoxin,Toxins, Fungal
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
March 2002, Proceedings of the National Academy of Sciences of the United States of America,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
June 2002, The Journal of biological chemistry,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
July 1990, Biochemistry,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
March 1977, Biochimica et biophysica acta,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
March 1994, Bioscience, biotechnology, and biochemistry,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
January 2000, European journal of biochemistry,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
January 2013, Doklady. Biochemistry and biophysics,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
June 1991, The Journal of biological chemistry,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
January 2001, The Journal of biological chemistry,
J Santolini, and F Haraux, and C Sigalat, and G Moal, and F André
March 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!