Rearrangement and expression of immunoglobulin light chain genes can precede heavy chain expression during normal B cell development in mice. 1999

T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
Institute for Genetics, University of Cologne,Weyertal 121, 50931 Cologne, Germany. ntanya@mac.genetik.umi-koeln.de

In mouse mutants incapable of expressing mu chains, VkappaJkappa joints are detected in the CD43(+) B cell progenitors. In agreement with these earlier results, we show by a molecular single cell analysis that 4-7% of CD43(+) B cell progenitors in wild-type mice rearrange immunoglobulin (Ig)kappa genes before the assembly of a productive VHDHJH joint. Thus, mu chain expression is not a prerequisite to Igkappa light chain gene rearrangements in normal development. Overall, approximately 15% of the total CD43(+) B cell progenitor population carry Igkappa gene rearrangements in wild-type mice. Together with the results obtained in the mouse mutants, these data fit a model in which CD43(+) progenitors rearrange IgH and Igkappa loci independently, with a seven times higher frequency in the former. In addition, we show that in B cell progenitors VkappaJkappa joining rapidly initiates kappa chain expression, irrespective of the presence of a mu chain.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D012795 Sialoglycoproteins Glycoproteins which contain sialic acid as one of their carbohydrates. They are often found on or in the cell or tissue membranes and participate in a variety of biological activities. Polysialoglycoprotein,Sialoglycopeptide,Sialoglycopeptides,Sialoglycoprotein,Sialoprotein,Sialoproteins,Polysialoglycoproteins
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D015321 Gene Rearrangement The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development. DNA Rearrangement,DNA Rearrangements,Gene Rearrangements,Rearrangement, DNA,Rearrangement, Gene,Rearrangements, DNA,Rearrangements, Gene
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
December 1993, International immunology,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
January 1992, [Rinsho ketsueki] The Japanese journal of clinical hematology,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
March 1993, Cell,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
February 1996, Immunity,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
January 1993, [Rinsho ketsueki] The Japanese journal of clinical hematology,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
November 2013, Oral surgery, oral medicine, oral pathology and oral radiology,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
February 2017, Journal of immunology (Baltimore, Md. : 1950),
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
September 2016, European journal of immunology,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
T I Novobrantseva, and V M Martin, and R Pelanda, and W Müller, and K Rajewsky, and A Ehlich
May 1994, Genes & development,
Copied contents to your clipboard!