| D011070 |
Poly I-C |
Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid. |
Poly(I-C),Poly(rI).Poly(rC),Polyinosinic-Polycytidylic Acid,Polyinosinic-Polycytidylic Acid (High MW),Polyriboinosinic-Polyribocytidylic Acid,Polyribose Inosin-Cytidil,Inosin-Cytidil, Polyribose,Poly I C,Polyinosinic Polycytidylic Acid,Polyriboinosinic Polyribocytidylic Acid,Polyribose Inosin Cytidil |
|
| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D004730 |
Endothelium, Vascular |
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. |
Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums |
|
| D005786 |
Gene Expression Regulation |
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. |
Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression |
|
| D005805 |
Genes, MHC Class I |
Genetic loci in the vertebrate major histocompatibility complex which encode polymorphic characteristics not related to immune responsiveness or complement activity, e.g., B loci (chicken), DLA (dog), GPLA (guinea pig), H-2 (mouse), RT-1 (rat), HLA-A, -B, and -C class I genes of man. |
Class I Genes,Genes, Class I,Genes, H-2 Class I,Genes, HLA Class I,MHC Class I Genes,H-2 Class I Genes,HLA Class I Genes,Class I Gene,Gene, Class I,Genes, H 2 Class I,H 2 Class I Genes |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000998 |
Antiviral Agents |
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. |
Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral |
|
| D012330 |
RNA, Double-Stranded |
RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms. |
Double-Stranded RNA,Double Stranded RNA,RNA, Double Stranded |
|
| D015088 |
2',5'-Oligoadenylate Synthetase |
An enzyme that catalyzes the conversion of ATP into a series of (2'-5') linked oligoadenylates and pyrophosphate in the presence of double-stranded RNA. These oligonucleotides activate an endoribonuclease (RNase L) which cleaves single-stranded RNA. Interferons can act as inducers of these reactions. |
2',5'-Oligoadenylate Polymerase,2-5A Synthetase,(2'-5')An Polymerase,2',5'-Oligo(A) Polymerase,2',5'-Oligo(A) Synthetase,2,5 Oligoadenylate Polymerase,2,5 Oligoadenylate Synthetase,ATP-(2'-5')oligo(A)adenylyltransferase,2',5' Oligoadenylate Polymerase,2',5' Oligoadenylate Synthetase,Oligoadenylate Polymerase, 2,5,Oligoadenylate Synthetase, 2,5,Polymerase, 2',5'-Oligoadenylate,Polymerase, 2,5 Oligoadenylate,Synthetase, 2',5'-Oligoadenylate,Synthetase, 2,5 Oligoadenylate |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|