Specific inhibition of influenza virus RNA polymerase and nucleoprotein gene expression by liposomally encapsulated antisense phosphorothioate oligonucleotides in MDCK cells. 1998

T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
Department of Industrial Chemistry, Chiba Institute of Technology, Japan.

We have demonstrated that antisense phosphorothioate oligonucleotides (S-ODNs) inhibit influenza A virus replication in MDCK cells. Liposomally encapsulated and free antisense S-ODNs with four target sites (PB1, PB2, PA and NP genes) were tested for their abilities to inhibit virus-induced cytopathogenic effects in a MTT assay using MDCK cells. The liposomally encapsulated S-ODN complementary to the site around the PB2 AUG initiation codon showed highly inhibitory effects. In contrast, the inhibitory effect of the liposomally encapsulated S-ODN targeted to PB1 was considerably decreased in comparison with that directed to the PB2 target site. The liposomally encapsulated antisense S-ODNs exhibited higher inhibitory activities than the free oligonucleotides, and showed sequence-specific inhibition, whereas free antisense S-ODNs were observed to inhibit viral adsorption to MDCK cells. Liposomal preparations of oligonucleotides facilitated their release from endocytic vesicles, and thus cytoplasmic and nuclear localization was observed. The activities of the antisense S-ODNs were effectively enhanced by using the liposomal carrier. Interestingly, the liposomally encapsulated FITC-S-ODN-PB2-as accumulated in the nuclear region of MDCK cells. However, weak fluorescence was observed within the endosomes and the cytoplasm of MDCK cells treated with the free antisense S-ODNs. The cationic lipid particles may thus be a potentially useful delivery vehicle for oligonucleotide-based therapeutics and transgenes, appropriate for use in vitro or in vivo.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D009975 Orthomyxoviridae A family of RNA viruses causing INFLUENZA and other respiratory diseases. Orthomyxoviridae includes INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; INFLUENZAVIRUS D; ISAVIRUS; and THOGOTOVIRUS. Influenza Viruses,Myxoviruses,Orthomyxoviruses,Influenza Virus,Myxovirus,Orthomyxovirus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004339 Drug Compounding The preparation, mixing, and assembly of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814). Drug Formulation,Drug Preparation,Drug Microencapsulation,Pharmaceutical Formulation,Compounding, Drug,Formulation, Drug,Formulation, Pharmaceutical,Microencapsulation, Drug,Preparation, Drug
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005562 Formazans Colored azo compounds formed by the reduction of tetrazolium salts. Employing this reaction, oxidoreductase activity can be determined quantitatively in tissue sections by allowing the enzymes to act on their specific substrates in the presence of tetrazolium salts. Formazan
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed

Related Publications

T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
June 1996, Biochemical and biophysical research communications,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
January 1995, Nucleic acids symposium series,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
January 1998, Nucleosides & nucleotides,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
January 1996, Biochemical and biophysical research communications,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
April 2001, European journal of biochemistry,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
October 1997, Journal of pharmaceutical sciences,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
August 1998, Antisense & nucleic acid drug development,
T Abe, and S Suzuki, and T Hatta, and K Takai, and T Yokota, and H Takaku
September 1995, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!