Synthesis, in vitro anti-human immunodeficiency virus structure-activity relationships and biological stability of 5'-O-myristoyl analogue derivatives of 3'-azido-2',3'-dideoxythymidine (AZT) as potential prodrugs. 1998

K Parang, and L I Wiebe, and E E Knaus
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.

5'-O-Myristoyl analogue derivatives of 3'-azido-2',3'-dideoxythymidine (AZT), designed as potential double-barrelled prodrugs to AZT and the myristic acid analogues, were synthesized. Their ability to protect CEM cells against human immunodeficiency virus (HIV)-induced cytopathogenicity was determined and structure-activity paradigms were developed. 3'-Azido-2',3'-dideoxy-5'-O-(4-oxatetradecanoyl)thymidine (EC50 = 1.4 nM) and 3'-azido-2',3'-deoxy-5'-O-(12-bromododecanoyl)thymidine (EC50 = 3.2 nM) were the most effective anti-HIV-1 agents, relative to AZT (EC50 = 10 nM). These myristoyl analogue derivatives were more lipophilic (calculated log P = 4.5-8.1 range) than the parent compound AZT (log P = 0.06), and a linear correlation between their log P and HPLC log retention times was observed. The ester cleavage half-lives (t1/2) for esters upon in vitro incubation with porcine liver esterase, rat plasma or rat brain homogenate was dependent on the steric bulk, and electronegative inductive effect of the alpha-substituent (H, Br, F), of the 5'-O-myristoyl analogue moiety. 3'-Azido-2',3'-dideoxy-5'-O-(11-(4-iodophenoxy) undecanoyl)-thymidine exhibited t1/2 values of 80.4, 3.7 and 150.0 min upon incubation with porcine liver esterase, rat plasma and rat brain homogenate, respectively.

UI MeSH Term Description Entries
D009226 Myristates Salts and esters of the 14-carbon saturated monocarboxylic acid--myristic acid. Tetradecanoates
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

K Parang, and L I Wiebe, and E E Knaus
January 1999, Nucleosides & nucleotides,
K Parang, and L I Wiebe, and E E Knaus
January 1995, Cellular and molecular biology (Noisy-le-Grand, France),
K Parang, and L I Wiebe, and E E Knaus
January 1988, Annals of neurology,
K Parang, and L I Wiebe, and E E Knaus
October 1999, Nucleosides & nucleotides,
Copied contents to your clipboard!