Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. 1999

L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA.

Troponin C contains a 14-residue alpha-helix at the amino terminus, the N-helix, that calmodulin lacks. Deletion of the first 11-14 residues of troponin C alters function. In the present investigation a mutant lacking residues 1-7 of the N-helix has normal conformation, Ca2+ binding, and regulatory function. Thus, residues 8-14 of the N-helix are generally sufficient for troponin C function. In the x-ray structures of troponin C there is a salt bridge between Arg 11 in the N-helix and Glu 76 in the D-helix. Destroying the salt bridge by individually mutating the residues to Cys has no effect on function. However, mutation of both residues to Cys reduces troponin C's affinity for the troponin complex on the thin filament, reduces the stability of the N-domain in the absence of divalent cations, increases the Ca2+ affinity and reduces the cooperativity of the Ca2+Mg2+ sites in the C-domain, and alters the conformational change that takes place upon Ca2+ binding (but not Mg2+ binding) to the C-domain. Cross-linking with bis-(maleimidomethylether) partially restores function. The Ca2+-specific sites in the N-domain, those closest to the sites of the mutations, are unaffected in the assays employed. These results show that the N-helix is a critical structural element for interaction with and activation of the thin filament. Moreover, mutations in the N-helix affect the C-terminal domain, consistent with recent structural studies showing that the N-helix and C-terminal domain are physically close.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
August 2004, The Journal of biological chemistry,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
October 2014, Proceedings of the National Academy of Sciences of the United States of America,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
March 2001, Archives of biochemistry and biophysics,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
August 2002, The Journal of biological chemistry,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
January 2003, The Journal of biological chemistry,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
December 2000, Archives of biochemistry and biophysics,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
July 1995, Biochemistry,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
June 2005, The Journal of biological chemistry,
L Smith, and N J Greenfield, and S E Hitchcock-DeGregori
June 1999, The Journal of biological chemistry,
Copied contents to your clipboard!