Methylglyoxal causes swelling and activation of a volume-sensitive anion conductance in rat pancreatic beta-cells. 1999

L Best, and H E Miley, and P D Brown, and L J Cook
Department of Medicine, University of Manchester, Oxford Road, Manchester, M13 9WL, UK.

Membrane potential and whole-cell current were studied in rat pancreatic beta-cells using the 'perforated patch' technique and cell volume measured by a video-imaging method. Exposure of beta-cells to the alpha-ketoaldehyde methylglyoxal (1 mM) resulted in depolarization and electrical activity. In cells voltage-clamped at -70 mV, this effect was accompanied by the development of inward current noise. In voltage-pulse experiments, methylglyoxal activated an outwardly rectifying conductance which was virtually identical to the volume-sensitive anion conductance previously described in these cells. Two inhibitors of this conductance, 4,4'-dithiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), also inhibited the depolarization and inward current evoked by methylglyoxal. Methylglyoxal increased beta-cell volume to a relative value of 1.33 after 10 min with a gradual return towards basal levels following withdrawal of the alpha-ketoaldehyde. None of the effects of methylglyoxal was observed in response to t-butylglyoxal which, unlike methylglyoxal, is a poor substrate for the glyoxalase pathway. Methylglyoxal had no apparent effect on beta-cell K+ channel activity. It is suggested that the metabolism of methylglyoxal to D-lactate causes beta-cell swelling and activation of the volume-sensitive anion channel, leading to depolarization. These findings could be relevant to the stimulatory action of D-glucose, the metabolism of which generates significant quantities of L-lactate.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009579 Nitrobenzoates Benzoic acid or benzoic acid esters substituted with one or more nitro groups. Nitrobenzoic Acids,Acids, Nitrobenzoic
D011765 Pyruvaldehyde An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals. Acetylformaldehyde,Methylglyoxal,Oxopropanal,Pyruvic Aldehyde,Aldehyde, Pyruvic
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D012414 Rubidium Radioisotopes Unstable isotopes of rubidium that decay or disintegrate emitting radiation. Rb atoms with atomic weights 79-84, and 86-95 are radioactive rubidium isotopes. Radioisotopes, Rubidium

Related Publications

L Best, and H E Miley, and P D Brown, and L J Cook
March 2001, Experimental physiology,
L Best, and H E Miley, and P D Brown, and L J Cook
July 1990, Molecular and cellular biochemistry,
L Best, and H E Miley, and P D Brown, and L J Cook
July 1999, Biochimica et biophysica acta,
L Best, and H E Miley, and P D Brown, and L J Cook
October 1998, British journal of pharmacology,
L Best, and H E Miley, and P D Brown, and L J Cook
July 2009, The Journal of membrane biology,
L Best, and H E Miley, and P D Brown, and L J Cook
May 1998, Biochemical pharmacology,
L Best, and H E Miley, and P D Brown, and L J Cook
August 2011, Molecular and cellular endocrinology,
L Best, and H E Miley, and P D Brown, and L J Cook
November 2004, Diabetologia,
L Best, and H E Miley, and P D Brown, and L J Cook
September 1996, The American journal of physiology,
Copied contents to your clipboard!