pH-modulation of chloride channels from the sarcoplasmic reticulum of skeletal muscle. 1999

J I Kourie
Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, ACT, 0200 Australia.

The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pHcis) and luminal pH (pHtrans) was investigated using the lipid bilayer-vesicle fusion technique. Low pHcis 6.75-4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pHcis 7.26-7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65-75 pS) whereas at low pHcis 6.75-4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5-40 pS). Similarly, low pHtrans 4.07, but not pHtrans 6.28, modified the activity of SCl channels. The effects of low pHcis are pronounced at 10(-3) and 10(-4) M [Ca2+]cis but are not apparent at 10(-5) M [Ca2+]cis, where the subconductances of the channel are already prominent. Low pHcis-induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pHcis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

J I Kourie
October 1986, Proceedings of the National Academy of Sciences of the United States of America,
J I Kourie
September 2001, The Journal of physiology,
J I Kourie
August 1971, Biochimica et biophysica acta,
J I Kourie
January 1974, Methods in enzymology,
J I Kourie
November 1982, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J I Kourie
June 2000, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!