Effects of the agrochemicals butachlor, pretilachlor and isoprothiolane on rat liver xenobiotic-metabolizing enzymes. 1998

M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

1. The herbicides butachlor (2-chloro-2',6',diethyl-N-[buthoxymethyl] acetanilide) and pretilachlor (2-chloro-2',6'-diethyl-N-[2-propoxyethyl] acetanilide) are widely used in Asia, South America, Europe and Africa. Isoprothiolane (diisopropyl-1,3-dithiolan-2-ylidenemalonate) is used as a fungicide and an insecticide in rice paddies. We administered these agrochemicals to the male rat and examined their effects on cytochrome P450 (P450), glutathione S-transferase (GST), UDP-glucuronosyltransferase (UDPGT), and NAD(P)H-quinone oxidoreductase 1 (NQO1)-related metabolism in the liver. 2. Administration of isoprothiolane, butachlor or pretilachlor to rat induced hepatic P4502B subfamily-dependent enzyme activities (pentoxyresorufin O-depentylation and testosterone 16 beta-hydroxylation) up to 271-413% of control, which coincided with the increase in expression levels of the P4502B apoprotein. 3. Activities of GST toward 1-chloro-2,4-nitrobenzene and 3,4-dichloronitrobenzene were slightly induced (127-133% of control) in the liver of the rat treated with these pesticides. On the other hand, marked elevations of UDPGT activities toward p-nitrophenol (164-281% of control) were observed. NQO1-related metabolism (menadione reductase activity) was also induced (123-176% of control) in the liver of rat treated with these agrochemicals. 4. These results indicate that some of the agrochemicals currently in use are capable of inducing phase I and II xenobiotic-metabolizing enzyme activities in an isozyme selective manner. The induction of these activities may disrupt normal physiologic functions related to these enzymes in exposed animals.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010575 Pesticides Chemicals used to destroy pests of any sort. The concept includes fungicides (FUNGICIDES, INDUSTRIAL); INSECTICIDES; RODENTICIDES; etc. Pesticide
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000083 Acetanilides Compounds based on N-phenylacetamide, that are similar in structure to 2-PHENYLACETAMIDES. They are precursors of many other compounds. They were formerly used as ANALGESICS and ANTIPYRETICS, but often caused lethal METHEMOGLOBINEMIA. Acetylanilines,N-Phenylacetamides
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013876 Thiophenes A monocyclic heteroarene furan in which the oxygen atom is replaced by a sulfur. Thiophene
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase

Related Publications

M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
February 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
January 1993, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
August 1994, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
July 1986, Toxicology and applied pharmacology,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
April 1995, Cancer research,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
January 2012, Voprosy pitaniia,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
January 1996, Xenobiotica; the fate of foreign compounds in biological systems,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
January 1999, European journal of drug metabolism and pharmacokinetics,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
January 2015, Biomeditsinskaia khimiia,
M Ishizuka, and H Iwata, and A Kazusaka, and S Hatakeyama, and S Fujita
May 1993, Biochimica et biophysica acta,
Copied contents to your clipboard!