Orthotopic transplantation of pig hearts harvested after 30 min of normothermic ischemia: controlled reperfusion with blood cardioplegia containing the Na+-H+-exchange inhibitor HOE 642. 1998

J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
Department of Cardiovascular Surgery, Albert-Ludwigs-University Medical Center, Freiburg, Germany.

OBJECTIVE The aim of our study was to develop a surgical technique for a successful transplantation of hearts harvested after 30 min of normothermic ischemia without donor pretreatment. Successful transplantation of ischemic compromised hearts could help to expand the severely limited donor pool. We used the pig model because this species is very susceptible to myocardial ischemia. Na+-H+-exchange (NHE) inhibitors have shown excellent protective properties in several in vitro and in vivo models of myocardial ischemia and reperfusion. METHODS In group I (n=12) hearts were harvested after 30 min of normothermic ischemia following cardiac arrest induced by exsanguination. Hearts were perfused with warm blood cardioplegia and transplanted orthotopically. In group II (n=9) controlled reperfusion with cold leucocyte-depleted blood cardioplegia was performed after 30 min of normothermic ischemia. In group III (n=8) the same procedure was performed as in group II but blood cardioplegia contained 1 mmol/l HOE 642. RESULTS In group I massive myocardial oedema was observed and none of the animals could be weaned from cardiopulmonary bypass (CPB). In contrast, all animals in groups II and III could be weaned from CPB with low dose inotropic support. In groups II and III the contractility of the hearts, expressed as maximal left and right ventricular stroke work index was significantly impaired after transplantation as compared with the preoperative value. Supplementation of blood cardioplegia with HOE 642 resulted in a significantly better recovery of the LVSWImax (Group II vs. III). CONCLUSIONS Successful transplantation of pig hearts is possible after 30 min of normothermic ischemia without donor pretreatment if a controlled reperfusion with cold leucocyte-depleted blood cardioplegia is performed. HOE 642 given during reperfusion only improves posttransplant left ventricular function.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D002314 Cardioplegic Solutions Solutions which, upon administration, will temporarily arrest cardiac activity. They are used in the performance of heart surgery. Cardioplegic Solution,Solution, Cardioplegic,Solutions, Cardioplegic
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006324 Heart Arrest, Induced A procedure to stop the contraction of MYOCARDIUM during HEART SURGERY. It is usually achieved with the use of chemicals (CARDIOPLEGIC SOLUTIONS) or cold temperature (such as chilled perfusate). Cardiac Arrest, Induced,Cardioplegia,Induced Cardiac Arrest,Induced Heart Arrest,Cardioplegias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D013450 Sulfones Sulfone

Related Publications

J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
November 1997, Circulation,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
June 1998, Naunyn-Schmiedeberg's archives of pharmacology,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
February 2001, American journal of physiology. Heart and circulatory physiology,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
May 1996, The Annals of thoracic surgery,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
December 2003, The Canadian journal of cardiology,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
February 2001, Journal of cardiovascular pharmacology,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
January 1996, Pflugers Archiv : European journal of physiology,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
November 2000, Circulation,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
November 1997, Journal of molecular and cellular cardiology,
J Martin, and K Sarai, and M Yoshitake, and J Haberstroh, and N Takahashi, and G Lutter, and F Beyersdorf
October 2001, Japanese journal of pharmacology,
Copied contents to your clipboard!