Structure of the glycosylphosphatidylinositol-anchor of the trans-sialidase from Trypanosoma cruzi metacyclic trypomastigote forms. 1998

R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
CIHIDECAR (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

Both, culture-derived and metacyclic trypomastigotes of Trypanosoma cruzi shed a glycoprotein, the shed acute phase antigen, that is responsible for the trans-sialidase activity. In the present work the structure of the glycosylphosphatidylinositol membrane anchor of the trans-sialidase isolated from metacyclic forms was determined. Parasites were metabolically labelled with [9, 10(n)3H]-palmitic acid and the glycoprotein was purified by immunoprecipitation with a monoclonal antibody directed against the repetitive aminoacid sequence. Treatment of the glycoprotein with phosphatidylinositol phospholipase C (PI-PLC) from Bacillus thuringiensis rendered a lipid that comigrated in TLC with a standard of ceramide. No alkylglycerol was detected in contrast with the results previously obtained for the trans-sialidase isolated from culture-derived trypomastigotes where both lipids were found. Chemical and chromatographic analysis showed that the lipid moiety is palmitoyldihydrosphingosine with a minor amount of stearoyldihydrosphingosine. The glycan constituent of the glycosylphosphatidylinositol-anchor was analysed by nitrous acid deamination of the aqueous phase of the PI-PLC treatment, followed by reduction with NaBH4 and hydrolysis of the phosphodiester with aqueous hydrofluoric acid. A major oligosaccharide was obtained and enzymatic treatment with exoglycosidases and further chromatography in a high pH anion exchange system showed that the trimannosyl core backbone is substituted by an alpha-galactose. A comparison between the lipid constituent of the glycosylphosphatidylinositol anchor of several proteins and their spontaneous shedding by the action of an endogenous PI-PLC was made.

UI MeSH Term Description Entries
D008018 Life Cycle Stages The continuous sequence of changes undergone by living organisms during the post-embryonic developmental process, such as metamorphosis in insects and amphibians. This includes the developmental stages of apicomplexans such as the malarial parasite, PLASMODIUM FALCIPARUM. Life Cycle,Life History Stages,Cycle, Life,Cycles, Life,History Stage, Life,History Stages, Life,Life Cycle Stage,Life Cycles,Life History Stage,Stage, Life Cycle,Stage, Life History,Stages, Life Cycle,Stages, Life History
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000953 Antigens, Protozoan Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered. Protozoan Antigens

Related Publications

R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
December 2006, Cellular microbiology,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
October 1993, European journal of biochemistry,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
September 1997, Molecular and biochemical parasitology,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
May 1996, Biochemical and biophysical research communications,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
May 1996, Biochimica et biophysica acta,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
August 1999, Biochemical Society transactions,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
July 1987, The American journal of tropical medicine and hygiene,
R Agusti, and A S Couto, and O Campetella, and A C Frasch, and R M de Lederkremer
December 1992, Glycobiology,
Copied contents to your clipboard!