Perception of first- and second-order motion: separable neurological mechanisms? 1999

L M Vaina, and A Cowey, and D Kennedy
Department of Biomedical Engineering and Neurology, Boston University and Harvard Medical School, Brigham and Women's Hospital, Massachusetts 02215, USA. vaina@enga.bu.edu

An unresolved issue in visual motion perception is how distinct are the processes underlying "first-order" and "second-order" motion. The former is defined by spatiotemporal variations of luminance and the latter by spatiotemporal variations in other image attributes, such as contrast or depth. Here we describe two neurological patients with focal unilateral lesions whose contrasting perceptual deficits on psychophysical tasks of "first-order" and "second-order" motion are related to the maps of the human brain established by functional neuroimaging and gross anatomical features. We used a relatively fine-grained neocortical parcellation method applied to high-resolution MRI scans of the patients' brains to illustrate a subtle, yet highly specific dissociation in the visual motion system in humans. Our results suggest that the two motion systems are mediated by regionally separate mechanisms from an early stage of cortical processing.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002542 Intracranial Embolism and Thrombosis Embolism or thrombosis involving blood vessels which supply intracranial structures. Emboli may originate from extracranial or intracranial sources. Thrombosis may occur in arterial or venous structures. Brain Embolism and Thrombosis,Cerebral Embolism and Thrombosis,Embolism and Thrombosis, Brain

Related Publications

L M Vaina, and A Cowey, and D Kennedy
January 2000, Vision research,
L M Vaina, and A Cowey, and D Kennedy
January 2004, Progress in brain research,
L M Vaina, and A Cowey, and D Kennedy
May 1999, Journal of the Optical Society of America. A, Optics, image science, and vision,
L M Vaina, and A Cowey, and D Kennedy
December 1996, Journal of the Optical Society of America. A, Optics, image science, and vision,
L M Vaina, and A Cowey, and D Kennedy
September 1995, Vision research,
L M Vaina, and A Cowey, and D Kennedy
February 2007, Journal of neurophysiology,
L M Vaina, and A Cowey, and D Kennedy
January 1991, Vision research,
L M Vaina, and A Cowey, and D Kennedy
November 2008, Vision research,
L M Vaina, and A Cowey, and D Kennedy
March 2005, Vision research,
L M Vaina, and A Cowey, and D Kennedy
January 2008, Neuropsychologia,
Copied contents to your clipboard!