Mutational analysis of vaccinia virus nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase of the DExH box family. 1999

A Martins, and C H Gross, and S Shuman
Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.

Vaccinia virus nucleoside triphosphate phosphohydrolase I (NPH-I) is a DNA-dependent ATPase that serves as a transcription termination factor during viral mRNA synthesis. NPH-I is a member of the DExH box family of nucleic acid-dependent nucleoside triphosphatases (NTPases), which is defined by the presence of several conserved sequence motifs. We have assessed the contributions of individual amino acids (underlined) in motifs I (GxGKT), II (DExHN), III (SAT), and VI (QxxGRxxR) to ATP hydrolysis by performing alanine scanning mutagenesis. Significant decrements in ATPase activity resulted from mutations at nine positions: Lys-61 and Thr-62 (motif I); Asp-141, Glu-142, His-144, and Asn-145 (motif II); and Gln-472, Arg-476, and Arg-479 (motif VI). Structure-function relationships at each of these positions were clarified by introducing conservative substitutions and by steady-state kinetic analysis of the mutant enzymes. Comparison of our findings for NPH-I with those of mutational studies of other DExH and DEAD box proteins underscores similarities as well as numerous disparities in structure-activity relationships. We conclude that the functions of the conserved amino acids of the NTPase motifs are context dependent.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014616 Vaccinia virus The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS. Buffalopox virus,Poxvirus officinale,Rabbitpox virus,Buffalo Pox Virus,Rabbit Pox Virus,Buffalo Pox Viruses,Buffalopox viruses,Rabbit Pox Viruses,Rabbitpox viruses,Vaccinia viruses,Virus, Buffalo Pox,Viruses, Buffalo Pox,virus, Buffalopox
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D017766 Acid Anhydride Hydrolases A group of enzymes that catalyze the hydrolysis of diphosphate bonds in compounds such as nucleoside di- and tri-phosphates, and sulfonyl-containing anhydrides such as adenylylsulfate. (Enzyme Nomenclature, 1992) EC 3.6. Anhydride Hydrolases, Acid,Hydrolases, Acid Anhydride
D043583 Nucleoside-Triphosphatase An enzyme which catalyzes the hydrolysis of nucleoside triphosphates to nucleoside diphosphates. It may also catalyze the hydrolysis of nucleotide triphosphates, diphosphates, thiamine diphosphates and FAD. The nucleoside triphosphate phosphohydrolases I and II are subtypes of the enzyme which are found mostly in viruses. NTPase,Nucleoside Triphosphatase,Nucleoside Triphosphate Phosphohydrolase,Nucleoside Triphosphate Phosphohydrolase I,Nucleoside Triphosphate Phosphohydrolase II,Nucleosidetriphosphatase,Phosphohydrolase, Nucleoside Triphosphate,Triphosphatase, Nucleoside,Triphosphate Phosphohydrolase, Nucleoside

Related Publications

A Martins, and C H Gross, and S Shuman
August 1995, Journal of virology,
A Martins, and C H Gross, and S Shuman
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
A Martins, and C H Gross, and S Shuman
February 1998, Genes & development,
Copied contents to your clipboard!