Skeletal muscle afferent fibres release substance P in the nucleus tractus solitarii of anaesthetized cats. 1999

J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
Department of Physiology, Harry S. Moss Heart Center, University of Texas Southwestern Medical Center, 5323 Harry Hines boulevard, Dallas, TX 75235-9034, USA.jpotts@mednet.swmed.edu

1. The tachykinin substance P was recovered from the commissural subdivision of the nucleus tractus solitarii (cNTS) using in vivo microdialysis during activation of cardiorespiratory and skeletal muscle receptors in thirteen chloralose-anaesthetized cats. 2. Tetanic muscle contraction was evoked by stimulating L7-S1 ventral roots (n = 7). Electrically induced muscle contraction increased mean arterial pressure (MAP) by 55 +/- 10 mmHg and heart rate by 29 +/- 6 beats min-1. During contraction the dialysate concentration increased 154 % above resting control levels (from 0.217 +/- 0.009 to 0.546 +/- 0.023 fmol (100 microl)-1, control vs. contraction, P < 0.05). 3. Loss of cardiorespiratory input following disruption of the carotid sinus and vagus nerves significantly blunted, but did not abolish, the increase in substance P during muscle contraction (from 0.247 +/- 0.022 to 0.351 +/- 0.021 fmol (100 microl)-1, control vs. contraction, P < 0.05). Approximately 44 % of the substance P release during contraction was independent of cardiorespiratory input transmitted by carotid sinus and vagus nerves. 4. To determine the contribution of cardiorespiratory related neural input on substance P release, an intravascular balloon positioned in the thoracic aorta was inflated to increase arterial pressure (n = 6). Balloon inflation increased MAP by 50 +/- 5 mmHg and substance P increased from 0.251 +/- 0.025 to 0.343 +/- 0. 028 fmol (100 microl)-1 (control vs. balloon inflation, P < 0.05). This increase was completely abolished following interruption of vagal and carotid sinus nerves (from 0.301 +/- 0.012 to 0.311 +/- 0. 014 fmol (100 microl)-1, control vs. balloon inflation). This finding shows that neural input from cardiorespiratory receptors (primarily arterial baroreceptors) accounted for 37 % of the total substance P release during muscle contraction. 5. The findings from this study demonstrate that activation of skeletal muscle receptors and cardiorespiratory receptors (predominantly arterial baroreceptors) increases the extraneuronal concentration of substance P in the cNTS. Because substance P release was not completely abolished during muscle contraction following disruption of carotid sinus and vagus nerves it is proposed that: (1) afferent projections from contraction-sensitive skeletal muscle receptors may release substance P in the NTS; (2) neural input from muscle receptors activates substance P-containing neurones within the NTS; and (3) convergence of afferent input from skeletal muscle receptors and arterial baroreceptors onto substance P-containing neurones in the cNTS facilitates the release of substance P. The role of tachykininergic modulation of cardiorespiratory input is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
August 1986, Neuroscience letters,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
June 1997, Canadian journal of physiology and pharmacology,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
July 2002, Brain research,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
November 1987, The Journal of comparative neurology,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
August 2003, American journal of physiology. Heart and circulatory physiology,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
April 1991, Brain research,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
August 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
October 1987, Brain research,
J T Potts, and I E Fuchs, and J Li, and B Leshnower, and J H Mitchell
March 1985, The Journal of comparative neurology,
Copied contents to your clipboard!