Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. 1998

T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
Department of Immunopathology, Tokyo Metropolitan Institute of Gerontology, Japan.

Elimination of CD25+ T cells, which constitute 5-10% of peripheral CD4+ T cells in normal naive mice, leads to spontaneous development of various autoimmune diseases. These immunoregulatory CD25+CD4+ T cells are naturally unresponsive (anergic) in vitro to TCR stimulation, and, upon stimulation, suppress proliferation of CD25-CD4+ T cells and CD8+ T cells. The antigen concentration required for stimulating CD25+CD4+ T cells to exert suppression is much lower than that required for stimulating CD25-CD4+ T cells to proliferate. The suppression, which results in reduced IL-2 production by CD25-CD4+ T cells, is dependent on cellular interactions on antigen-presenting cells (and not mediated by far-reaching or long-lasting humoral factors or apoptosis-inducing signals) and antigen non-specific in its effector phase. Addition of high doses of IL-2 or anti-CD28 antibody to the in vitro T cell stimulation culture not only breaks the anergic state of CD25+CD4+ T cells, but also abrogates their suppressive activity simultaneously. Importantly, the anergic/suppressive state of CD25+CD4+ T cells appeared to be their basal default condition, since removal of IL-2 or anti-CD28 antibody from the culture milieu allows them to revert to the original anergic/suppressive state. Furthermore, transfer of such anergy/suppression-broken T cells from normal mice produces various autoimmune diseases in syngeneic athymic nude mice. These results taken together indicate that one aspect of immunologic self-tolerance is maintained by this unique CD25+CD4+ naturally anergic/suppressive T cell population and its functional abnormality directly leads to the development of autoimmune disease.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors

Related Publications

T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
December 2003, Current molecular medicine,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
April 2007, Immunology,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
January 2006, Current topics in microbiology and immunology,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
July 2000, The Journal of experimental medicine,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
December 2005, Journal of immunology (Baltimore, Md. : 1950),
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
August 2006, Immunological reviews,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
February 2009, Clinical and experimental immunology,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
April 2001, European journal of immunology,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
January 2005, International reviews of immunology,
T Takahashi, and Y Kuniyasu, and M Toda, and N Sakaguchi, and M Itoh, and M Iwata, and J Shimizu, and S Sakaguchi
August 1995, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!