Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. 1999

X Lu, and N A Timchenko, and L T Timchenko
Departments of Medicine, Section of Cardiology and Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

Myotonic dystrophy (DM) is a neuromuscular disorder associated with CTG triplet repeat expansion in the myotonin protein kinase gene ( DMPK ). We previously proposed a hypothesis suggesting that the expanded CUG repeats sequester specific RNA-binding proteins and that such a sequestration results in abnormal RNA processing of several RNAs containing CUG repeats in multiple tissues affected in patients with DM. One of the members of the CUG-binding proteins, CUG-BP, has been identified previously. Here we describe the second member of this family, elav -type ribonucleoprotein (ETR-3), which is highly expressed in heart and is able to interact with CUG repeats. Screening of a mouse liver cDNA library with a CUG-BP probe identified two mETR-3 cDNAs. Two additional cDNAs from mouse heart were amplified by RT-PCR. These cDNAs differ by several insertions/deletions and might be generated via alternative splicing. Mouse ETR-3 has a mol. wt of 50 kDa and displays a high level of homology to CUG-BP protein. The organization of the RNA-binding domains (RBDs) within the ETR-3 molecule is similar to one within CUG-BP. A study of mETR-3 RNA-binding activity showed that the mETR-3 binds to (CUG)8repeats. Sequence analysis of mETR-3 indicates the presence of several CUG repeats within the mETR-3 mRNA. Both CUG-BP and mETR-3 bind to mETR-3 mRNA via CUG repeats, suggesting the possible involvement of CUG-BP-like proteins in the regulation of mETR-3 processing. Analysis of the tissue distribution of ETR-3 showed that in human cells, ETR-3 mRNA is highly expressed in heart, but is undetectable in other tissues examined. Our results suggest the existence of a family of proteins that bind to CUG repeats and might be affected in DM by expansion of CUG repeats.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009223 Myotonic Dystrophy Neuromuscular disorder characterized by PROGRESSIVE MUSCULAR ATROPHY; MYOTONIA, and various multisystem atrophies. Mild INTELLECTUAL DISABILITY may also occur. Abnormal TRINUCLEOTIDE REPEAT EXPANSION in the 3' UNTRANSLATED REGIONS of DMPK PROTEIN gene is associated with Myotonic Dystrophy 1. DNA REPEAT EXPANSION of zinc finger protein-9 gene intron is associated with Myotonic Dystrophy 2. Dystrophia Myotonica,Myotonic Dystrophy, Congenital,Myotonic Myopathy, Proximal,Steinert Disease,Congenital Myotonic Dystrophy,Dystrophia Myotonica 1,Dystrophia Myotonica 2,Myotonia Atrophica,Myotonia Dystrophica,Myotonic Dystrophy 1,Myotonic Dystrophy 2,PROMM (Proximal Myotonic Myopathy),Proximal Myotonic Myopathy,Ricker Syndrome,Steinert Myotonic Dystrophy,Steinert's Disease,Atrophica, Myotonia,Atrophicas, Myotonia,Congenital Myotonic Dystrophies,Disease, Steinert,Disease, Steinert's,Dystrophia Myotonica 2s,Dystrophia Myotonicas,Dystrophica, Myotonia,Dystrophicas, Myotonia,Dystrophies, Congenital Myotonic,Dystrophies, Myotonic,Dystrophy, Congenital Myotonic,Dystrophy, Myotonic,Dystrophy, Steinert Myotonic,Myopathies, Proximal Myotonic,Myopathy, Proximal Myotonic,Myotonia Atrophicas,Myotonia Dystrophicas,Myotonic Dystrophies,Myotonic Dystrophies, Congenital,Myotonic Dystrophy, Steinert,Myotonic Myopathies, Proximal,Myotonica, Dystrophia,Myotonicas, Dystrophia,PROMMs (Proximal Myotonic Myopathy),Proximal Myotonic Myopathies,Steinerts Disease,Syndrome, Ricker
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067878 CELF Proteins A family of RRM proteins which contain two N-terminal RNA RECOGNITION MOTIF (RRM) domains, one C-terminal RRM domain, and a divergent segment of 160-230 amino acids between the second and third RRM domains. They regulate pre-mRNA ALTERNATIVE SPLICING and also function in RNA EDITING and PROTEIN BIOSYNTHESIS. BRUNOL Proteins,Bruno-Like Family Member Proteins,CUG Triplet Repeat, RNA-Binding Proteins,CUG-BP Proteins,CUGBP Proteins,CUGBP, Elav-Like Family Member Proteins,Bruno Like Family Member Proteins,CUG BP Proteins,CUG Triplet Repeat, RNA Binding Proteins,CUGBP, Elav Like Family Member Proteins,Proteins, BRUNOL,Proteins, CELF,Proteins, CUG-BP,Proteins, CUGBP
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

X Lu, and N A Timchenko, and L T Timchenko
February 2022, Nature biomedical engineering,
X Lu, and N A Timchenko, and L T Timchenko
February 1999, American journal of human genetics,
X Lu, and N A Timchenko, and L T Timchenko
January 2023, Biophysical journal,
X Lu, and N A Timchenko, and L T Timchenko
January 1996, Human molecular genetics,
X Lu, and N A Timchenko, and L T Timchenko
October 2015, Journal of chemical theory and computation,
X Lu, and N A Timchenko, and L T Timchenko
February 2013, Molecular therapy : the journal of the American Society of Gene Therapy,
X Lu, and N A Timchenko, and L T Timchenko
December 2015, Cell reports,
X Lu, and N A Timchenko, and L T Timchenko
January 2022, Frontiers in genetics,
X Lu, and N A Timchenko, and L T Timchenko
September 2006, Journal of neuroscience research,
Copied contents to your clipboard!