Antiarrhythmic effects of magnesium on rat papillary muscle and guinea pig ventricular myocytes. 1999

M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
Division of Nutritional Physiology, Graduate School of Health and Nutrition Sciences, Nakamura Gakuen University, Fukuoka, Japan. aomine@cc.nakamura-u.ac.jp

1. Despite widespread use of magnesium ion (Mg2+) for antiarrhythmic purposes, little direct information is available regarding its antiarrhythmic mechanisms. To elucidate the possible cellular mechanism, the effects of Mg2+ on early afterdepolarization (EAD), delayed afterdepolarization (DAD), triggered activity (TA), transient inward current (TI) and aftercontraction (AC) were examined in various cardiac preparations. The effects of Mg2+ on myoplasmic Ca2+ concentration were also studied. 2. The effects of Mg2+ on AC, induced by overdrive stimulation, were studied in isolated rat ventricular papillary muscle superfused with low K+ solution. In enzymatically isolated guinea pig myocytes, EAD, DAD and/or TA were induced after overdrive stimulation under conditions of superfusion with low K+ solution, using the whole-cell current-clamp method, and TI was also induced by the whole-cell voltage-clamp method. 3. Immediately after changing the solutions, containing varying concentrations of Mg2+, the effects of Mg2+ were examined. In addition, effects of Mg2+ on Ca transient were studied, using fura-2. 4. We found that: (1) in the rat papillary muscle, 10 mM Mg2+ effectively inhibited AC, which was produced after stimulation at both 3.3 Hz and 5 Hz, although 5 mM Mg2+ was without effect in the case of AC induced after 5-Hz stimulation; (2) in the myocytes, 5 mM Mg2+ did not inhibit DADs, EADs and TA, but 10 mM Mg2+ inhibited them completely; (3) the amplitude and frequency of TI decreased significantly in the presence of 10 mM Mg2+; and finally (4) 10 mM Mg2+ inhibited the Ca transient underlying DAD and/or TA. 5. The findings suggest, but do not prove unequivocally, that Mg's actions are probably due to a combination of a shift of the threshold of various ion channels to less negative potentials, a decrease in Ca2+ influx via Ca channels, a block of several K channels, and/or a block of Na-Ca exchanger. In conclusion, the present study indicates that extracellular Mg2+, via whatever mechanism, exerts antiarrhythmic activities.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
September 1996, Clinical and experimental pharmacology & physiology,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
September 1987, Journal of cardiovascular pharmacology,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
May 1989, Journal of cardiovascular pharmacology,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
September 1989, British journal of pharmacology,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
June 1995, The American journal of physiology,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
July 2002, Acta pharmacologica Sinica,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
November 1996, The Journal of pharmacology and experimental therapeutics,
M Aomine, and Y Tatsukawa, and T Yamato, and S Yamasaki
September 1994, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!