Mapping contacts between gRNA and mRNA in trypanosome RNA editing. 1999

S S Leung, and D J Koslowsky
Department of Microbiology, Michigan State University, East Lansing, MI 48824, USA.

All guide RNAs (gRNAs) identified to date have defined 5' anchor sequences, guiding sequences and a non-encoded 3' uridylate tail. The 5' anchor is required for in vitro editing and is thought to be responsible for selection and binding to the pre-edited mRNA. Little is known, however, about how the gRNAs are used to direct RNA editing. Utilizing the photo-reactive crosslinking agent, azidophenacyl (APA), attached to the 5'- or 3'-terminus of the gRNA, we have begun to map the structural relationships between the different defined regions of the gRNA with the pre-edited mRNA. Analyses of crosslinked conjugates produced with a 5'-terminal APA group confirm that the anchor of the gRNA is correctly positioning the interacting molecules. 3' Crosslinks (X-linker placed at the 3'-end of a U10tail) have also been mapped for three different gRNA/mRNA pairs. In all cases, analyses indicate that the U-tail can interact with a range of nucleotides located upstream of the first edited site. It appears that the U-tail prefers purine-rich sites, close to the first few editing sites. These results suggest that the U-tail may act in concert with the anchor to melt out secondary structure in the mRNA in the immediate editing domain, possibly increasing the accessibility of the editing complex to the proper editing sites.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei
D016053 RNA, Protozoan Ribonucleic acid in protozoa having regulatory and catalytic roles as well as involvement in protein synthesis. Protozoan RNA
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D017393 RNA Editing A process that changes the nucleotide sequence of mRNA from that of the DNA template encoding it. Some major classes of RNA editing are as follows: 1, the conversion of cytosine to uracil in mRNA; 2, the addition of variable number of guanines at pre-determined sites; and 3, the addition and deletion of uracils, templated by guide-RNAs (RNA, GUIDE, KINETOPLASTIDA). RNA, Messenger, Editing,Editing, RNA,Editings, RNA,RNA Editings

Related Publications

S S Leung, and D J Koslowsky
July 2017, Nucleic acids research,
S S Leung, and D J Koslowsky
November 1991, Cell,
S S Leung, and D J Koslowsky
July 2023, Science (New York, N.Y.),
S S Leung, and D J Koslowsky
August 1996, Science (New York, N.Y.),
S S Leung, and D J Koslowsky
March 1989, Biochimica et biophysica acta,
S S Leung, and D J Koslowsky
August 1996, Science (New York, N.Y.),
S S Leung, and D J Koslowsky
October 1994, Science (New York, N.Y.),
Copied contents to your clipboard!