Neurogenic vasodilation mediated by nitric oxide in porcine cerebral arteries. 1999

T Tanaka, and T Okamura, and J Handa, and N Toda
Department of Pharmacology, Shiga University of Medical Science, Seta, Ohtsu, Japan.

Mechanisms of neurogenic vasodilatation and its modification by superoxide, acetylcholine, and vasoactive intestinal peptide (VIP) in porcine cerebral arteries were investigated. Relaxant responses to transmural electrical stimulation and nicotine of cerebral artery strips without endothelium were abolished by tetrodotoxin and hexamethonium, respectively. N(G)-nitro-L-arginine, a nitric oxide (NO) synthase inhibitor, abolished or markedly reduced the neurogenic response but did not affect the relaxation by exogenous NO. The inhibitory effect was reversed by L-arginine. Duroquinone, a superoxide-generating agent, did not alter the relaxations induced by electrical stimulation and nicotine. However, in the strips treated with diethyldithiocarbamate, an inhibitor of copper/zinc superoxide dismutase (SOD), the responses were significantly inhibited by duroquinone. The inhibition was partially reversed by SOD. Physostigmine inhibited, but atropine potentiated, the neurogenic response. The relaxation was attenuated by acetylcholine but not by VIP. There were nerve fibers and bundles containing NADPH diaphorase in the adventitia of cerebral arteries. It appears that porcine cerebral arteries are innervated by NO synthase-containing nerves that liberate NO on excitation as a neurotransmitter to produce muscular relaxation, and the nerve function is protected by endogenous SOD from degradation of NO by superoxide anions. The neurogenic relaxation is inhibited by acetylcholine released from cholinergic nerves, possibly because of an impaired production or release of NO.

UI MeSH Term Description Entries
D008297 Male Males
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D005731 Ganglionic Stimulants Agents that mimic neural transmission by stimulation of the nicotinic receptors on postganglionic autonomic neurons. Drugs that indirectly augment ganglionic transmission by increasing the release or slowing the breakdown of acetylcholine or by non-nicotinic effects on postganglionic neurons are not included here nor are the nonspecific cholinergic agonists. Stimulants, Ganglionic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Tanaka, and T Okamura, and J Handa, and N Toda
January 2002, Japanese journal of pharmacology,
T Tanaka, and T Okamura, and J Handa, and N Toda
May 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
T Tanaka, and T Okamura, and J Handa, and N Toda
April 1993, The Journal of pharmacology and experimental therapeutics,
T Tanaka, and T Okamura, and J Handa, and N Toda
April 1994, Journal of cardiovascular pharmacology,
T Tanaka, and T Okamura, and J Handa, and N Toda
March 2010, American journal of physiology. Regulatory, integrative and comparative physiology,
T Tanaka, and T Okamura, and J Handa, and N Toda
May 2001, European journal of pharmacology,
T Tanaka, and T Okamura, and J Handa, and N Toda
March 2012, Neuropharmacology,
T Tanaka, and T Okamura, and J Handa, and N Toda
April 1978, Circulation research,
T Tanaka, and T Okamura, and J Handa, and N Toda
January 2012, PloS one,
T Tanaka, and T Okamura, and J Handa, and N Toda
April 1997, American journal of obstetrics and gynecology,
Copied contents to your clipboard!