Location of ryanodine receptor binding site on skeletal muscle triadin. 1999

A H Caswell, and H K Motoike, and H Fan, and N R Brandt
Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Florida 33136, USA.

The binding between intact triadin or expressed triadin peptides and the ryanodine receptor has been investigated using membrane overlay and affinity chromatography. Ryanodine receptor binds to triadin blotted onto nitrocellulose with a KD of 40 nM in a medium containing 150 mM NaCl. The binding is substantially inhibited by hypertonic salt solution. Blot overlay experiments show that ryanodine receptor binds to bacterially expressed peptides, triadin(110-280), triadin(110-267), and triadin(279-674), but to no other moieties of the protein (numbers in parentheses are the residue positions). This binding is strongly inhibited by hypertonic salt solution. The same three triadin peptides as well as triadin(68-267), when attached to a glutathione column, bind to the ryanodine receptor. However, triadin(110-280) binds with high affinity, while triadin(68-267), triadin(110-267), and triadin(279-674) bind with low affinity. Triadin(258-280), triadin(267-280), and triadin(258-299) all bind to the ryanodine receptor with high affinity. On the other hand, a construct containing triadin(267-280), but preceded by nine residues of heterologous amino acids, does not bind significantly. These observations indicate two types of binding between triadin and the ryanodine receptor: (1) a low-affinity ionic interaction of large portions of triadin; (2) a specific high-affinity binding of a short relatively hydrophobic segment. The binding of this segment is probably the physiologically important domain for attachment between triadin and the ryanodine receptor.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A H Caswell, and H K Motoike, and H Fan, and N R Brandt
January 2012, PloS one,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
September 1998, Biochemistry,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
October 2007, The Journal of general physiology,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
March 1999, Molecular pharmacology,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
July 1999, The Journal of cell biology,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
September 2002, The Journal of biological chemistry,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
August 2015, The Journal of physiology,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
April 1999, The Journal of biological chemistry,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
April 1993, European journal of biochemistry,
A H Caswell, and H K Motoike, and H Fan, and N R Brandt
December 1995, Biophysical journal,
Copied contents to your clipboard!