Organization of open complexes at Escherichia coli promoters. Location of promoter DNA sites close to region 2.5 of the sigma70 subunit of RNA polymerase. 1999

J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
School of Biochemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.

A cysteine-tethered DNA cleavage agent has been used to locate the position of region 2.5 of sigma70 in transcriptionally competent complexes between Escherichia coli RNA polymerase and promoters. In this study we have engineered sigma70 to introduce a unique cysteine residue at a number of positions in region 2.5. Mutant proteins were purified, and in each case, the single cysteine residue used as the target for covalent coupling of the DNA cleavage agent p-bromoacetamidobenzyl-EDTA.Fe (FeBABE). RNA polymerase core reconstituted with tagged sigma derivatives was shown to be transcriptionally active. Hydroxyl radical-based DNA cleavage mediated by tethered FeBABE was observed for each derivative of RNA polymerase in the open complex. Our results show that region 2.5 is in close proximity to promoter DNA just upstream of the -10 hexamer. This positioning is independent of promoter sequence. A model for the interaction of this region of sigma with promoter DNA is discussed.

UI MeSH Term Description Entries
D007502 Iron Chelating Agents Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems. Iron Chelates,Agents, Iron Chelating,Chelates, Iron,Chelating Agents, Iron
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
July 1997, The EMBO journal,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
May 1998, Proceedings of the National Academy of Sciences of the United States of America,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
February 1999, The EMBO journal,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
January 2009, Proceedings of the National Academy of Sciences of the United States of America,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
August 1990, The Biochemical journal,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
December 1978, Biochemistry,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
February 1975, FEBS letters,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
June 1996, Nucleic acids research,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
April 1998, The Journal of biological chemistry,
J A Bown, and J T Owens, and C F Meares, and N Fujita, and A Ishihama, and S J Busby, and S D Minchin
February 1993, The Biochemical journal,
Copied contents to your clipboard!