Identification and reconstitution of an isoform of the 116-kDa subunit of the vacuolar proton translocating ATPase. 1999

S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
Division of Molecular Transport, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.

We have identified a cDNA encoding an isoform of the 116-kDa subunit of the bovine vacuolar proton translocating ATPase. The predicted protein sequence of the new isoform, designated a2, consists of 854 amino acids with a calculated molecular mass of 98,010 Da; it has approximately 50% identity to the original isoform (a1) we described (Peng, S.-B., Crider, B. P., Xie, X.-S., and Stone, D.K. (1994) J. Biol. Chem. 269, 17262-17266). Sequence comparison indicates that the a2 isoform is the bovine homologue of a 116-kDa polypeptide identified in mouse as an immune regulatory factor (Lee, C.-K., Ghoshal, K., and Beaman, K.D. (1990) Mol. Immunol. 27, 1137-1144). The bovine a1 and a2 isoforms share strikingly similar structures with hydrophilic amino-terminal halves that are composed of more than 30% charged residues and hydrophobic carboxyl-terminal halves that contain 6-8 transmembrane regions. Northern blot analysis demonstrates that isoform a2 is highly expressed in lung, kidney, and spleen. To determine the possible role of the a2 isoform in vacuolar proton pump function, we purified from bovine lung a vacuolar pump proton channel (VO) containing isoform a2. This VO conducts bafilomycin-sensitive proton flow after reconstitution and acid activation, and supports proton pumping activity after assembly with the catalytic sector (V1) of vacuolar-type proton translocating ATPase (V-ATPase) and sub-58-kDa doublet, a 50-57-kDa polypeptide heterodimer required for V-ATPase function. These data indicate that the a2 isoform of the 116-kDa polypeptide functions as part of the proton channel of V-ATPases.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
July 1995, The Journal of biological chemistry,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
May 1999, The Journal of biological chemistry,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
August 1992, Journal of bioenergetics and biomembranes,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
August 1996, Biochemistry,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
August 2001, Gene,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
March 2000, The Journal of biological chemistry,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
April 1991, FEBS letters,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
February 1999, Journal of bioenergetics and biomembranes,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
April 1996, The Journal of biological chemistry,
S B Peng, and X Li, and B P Crider, and Z Zhou, and P Andersen, and S J Tsai, and X S Xie, and D K Stone
April 1998, European journal of pharmacology,
Copied contents to your clipboard!