Role of surface glycoproteins in human platelet function. 1976

A T Nurden, and J P Caen

Glycoproteins present at the external surface of cells probably play specific roles in cellular function. Increasing evidence suggests that the glycoproteins span the plasma membrane with the bulk of the bound carbohydrate asymmetrically distributed on the outer surface. Micellar association of glycoproteins in membranes leads to pore formation and functional roles in transport through the membrane, while surface glycoproteins have been shown to be enzymes, to determine cell specificity and contribute to the cell surface change. The platelet plasma membrane contains 3 major glycoproteins, glycoproteins I, II and III as characterized in order of their decreasing molecular weight. Glycoprotein I appears to have the highest sialic acid content and to give rise to a platelet specific acidic macroglycopeptide on trypsin digestion. Specific glycoprotein abnormalities in the platelets of patients with Glanzmann's thrombasthenia suggest that the glycoproteins play a role in the mechanism of platelet aggregation. A much reduced content of glycoprotein I in the platelets of 2 patients with the Bernard Soulier syndrome may be associated with their defective adhesion to subendothelium and indicates a possible relationship on the platelet surface with the von Willebrand factor protein. Preliminary evidence suggests that in common with other plasma membranes the platelet membrane has a fluid structure and that the organization of the glycoproteins on the platelet surface is extremely sensitive to stimuli and susceptible to change.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D001791 Blood Platelet Disorders Disorders caused by abnormalities in platelet count or function. Thrombocytopathy,Blood Platelet Disorder,Disorder, Blood Platelet,Disorders, Blood Platelet,Platelet Disorder, Blood,Platelet Disorders, Blood,Thrombocytopathies
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A T Nurden, and J P Caen
November 1978, Seikagaku. The Journal of Japanese Biochemical Society,
A T Nurden, and J P Caen
April 1987, Transfusion medicine reviews,
A T Nurden, and J P Caen
October 1976, The Journal of biological chemistry,
A T Nurden, and J P Caen
January 1984, Journal de pharmacologie,
A T Nurden, and J P Caen
January 1992, Methods in enzymology,
A T Nurden, and J P Caen
December 1982, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
A T Nurden, and J P Caen
August 1979, Biochimica et biophysica acta,
Copied contents to your clipboard!