Effect of phenobarbital pretreatment on in vitro enzyme kinetics and in vivo biotransformation of benzene in the rat. 1976

I Gut

Phenobarbital pretreatment (50 mg/kg/day for 3 days orally) of male Wistar rats increased Vmax of benzene in vitro hepatic microsomal biotransformation about 6-fold without changing Km. However, benzene blood levels after oral, intraperitoneal, or subcutaneous benzene administration (3-3.5 mmoles/kg) were not influenced by phenobarbital pretreatment. The phenol blood levels after oral or intraperitoneal benzene were increased by phenobarbital pretreatment, but less than expected from in vitro data and only 3 h after benzene administration. Phenol elimination in urine after subcutaneous benzene was not affected by phenobarbital. After oral or intraperitoneal benzene administration, phenol urine excretion closely followed the levels of phenol in blood, i.e., rate of phenol urine excretion was significantly, but shortly increased, and the cumulative urine excretion of phenol increased very little or remained unchanged. Differences between the in vitro and in vivo observations of the effect of phenolbarbital on benzene biotransformation may partly be explained by distribution of benzene, which apparently limited benzene availability for biotransformation (Vd = 5.5) and caused rapid decrease of benzene concentrations in blood. Conditions for enzyme activity may have been substantially different in vitro vs. in vivo: in vitro concentrations of benzene were at least by an order of magnitude higher than phenol concentrations, while in vivo, an opposite relation prevailed making a competition for microsomal monooxygenase possible. Cofactor availability may be another rate-limiting step or factor of in vivo benzene biotransformation, as benzene ring hydroxylation requires high energy. The rate of in vitro hepatic microsomal benzene biotransformation proved to be of limited value when predicting benzene quantitative biotransformation in vivo in contradistinction to various substrates where the in vitro and in vivo biotransformation data are in good agreement.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

I Gut
November 1979, Archives internationales de pharmacodynamie et de therapie,
I Gut
October 1994, Toxicology in vitro : an international journal published in association with BIBRA,
I Gut
January 1996, Xenobiotica; the fate of foreign compounds in biological systems,
I Gut
February 1986, Archives internationales de pharmacodynamie et de therapie,
I Gut
February 1972, The American journal of physiology,
Copied contents to your clipboard!