The regulatory mechanism of phosphatidylinositol 3-kinase by insulin in 3T3 L1 fibroblasts: phosphorylation-independent activation of phosphatidylinositol 3-kinase. 1998

I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
Department of Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea.

Phosphatidylinositol (PI) 3-kinase plays an important role in transducing the signals of various growth factor receptors. However, the regulatory mechanism of PI3-kinase activity by these growth factor receptors is not completely understood. Therefore, we attempted to clarify the regulatory mechanism of PI3-kinase using insulin and 3T3 L1 fibroblasts. Our results showed that insulin stimulated PI3-kinase activity seven-fold and concomitantly phosphorylated a p85 subunit at the tyrosine residue. However, this tyrosine phosphorylation was not significant in the activation of PI3-kinase as the PI3-kinase pulled down by the overexpressed GST-p85 fusion protein showed as high an activity as the immunoprecipitated one. The p110 subunit was phosphorylated at both serine and tyrosine residues without insulin treatment. Since the phosphorylation state was not changed by insulin. The results suggested that phosphorylation of the p110 subunit does not control PI3-kinase activity. Finally, it was shown that the insulin receptor substrate-1 (IRS-1) binding to PI3-kinase was not sufficient for full activation because the amount of IRS-1 pulled down by the GST-p85 fusion protein reached almost maximum, after incubation with insulin-treated cell lysates for 20 min, whereas PI3-kinase activity reached its maximum only after incubation for 5 h. All results suggest that the phosphorylation of p85 subunit at tyrosine residues and phosphorylation of p110 subunit at tyrosine or serine residues are not functionally significant in the regulation of PI3-kinase activity. They also suggest that P13-kinase is needed to bind to other protein(s) as well as the insulin receptor substrate-1 for full activation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings

Related Publications

I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
May 2002, The Journal of biological chemistry,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
October 1998, Diabetologia,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
July 2008, Experimental cell research,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
November 2003, Endocrinology,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
May 1995, Biochemical Society transactions,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
February 1990, Proceedings of the National Academy of Sciences of the United States of America,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
January 1996, The Journal of biological chemistry,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
July 1994, Molecular and cellular endocrinology,
I Kang, and S L Choi, and S S Kim, and S J Kim, and J Ha, and S M Oh, and S S Kim
June 1994, Molecular and cellular endocrinology,
Copied contents to your clipboard!