Discriminative stimulus effects of ethanol: neuropharmacological characterization. 1999

W Kostowski, and P Bieńkowski
Department of Pharmacology & Physiology of the Nervous System, Institute of Psychiatry & Neurology, Warsaw, Poland.

Generally, compounds discriminated by animals possess psychotropic effects in animals and humans. As with many other drugs of abuse, strength of the ethanol discriminative stimulus is dose related. The majority of studies show that doses close to 1.0 g/kg are close to the minimum at which the discrimination can be learned easily. Substitution studies suggest that anxiolytic, sedative, atactic, and myorelaxant effects of ethanol all play an important role in the formation of its intercoeptive stimulus. Low doses of ethanol produce more excitatory cues, similar to amphetamine-like subjective stimuli, whereas higher doses produce rather sedative/hypnotic stimuli similar to those elicited by barbiturates. Substitution studies have shown that the complete substitution for ethanol may be exerted by certain GABA-mimetic drugs acting through different sites within the GABA(A)-benzodiazepine receptor complex (e.g., diazepam, pentobarbital, certain neurosteroids), gamma-hydroxybutyrate, and antagonists of the glutamate NMDA receptor. Among the NMDA receptor antagonists both noncompetitive (e.g., dizocilpine) and competitive antagonists (e.g., CGP 40116) are capable of substituting for ethanol. Further, some antagonists of strychnine-insensitive glycine modulatory sites among the NMDA receptor complex (e.g., L-701,324) dose-dependently substitute for the ethanol discriminative stimulus. On the other hand, neither GABA-benzodiazepine antagonists nor NMDA receptor agonists produce contradictory effects (i.e., reduce the ethanol discriminative stimulus). There is influence of a particular training dose of ethanol on the substitution pattern of different compounds. For example, 5-HT(1B/2C) agonists substitute for intermediate (1.0 g/kg) but not higher (2.0 g/kg) ethanol training doses. Discrimination studies with ethanol and drugs acting on NMDA and GABA receptors consistently indicate asymmetrical generalization. For example, ethanol is able to generalize to barbiturates and benzodiazepines, but neither the benzodiazepine nor barbiturate response generalizes to ethanol. Only a few drugs are able to antagonize, at least to some extent, the discriminative stimulus of ethanol (e.g., partial inverse GABA-benzodiazepine receptor antagonist Ro 15-4513 and the opioid antagonist naloxone). The ethanol stimulus effect may be increased (i.e., stronger recognition) by N-cholinergic drugs (nicotine), dopaminergic drugs (apomorphine), and 5-HT3 receptor agonists (m-chlorophenylbiguanide). Thus, the ethanol stimulus is composed of the several components, with the NMDA receptor and GABA(A) receptor complex being of particular importance. This suggests that a drug mixture may be more capable of substituting for ethanol (or block its stimulus) than a single compound. The ability of drugs to substitute for the ethanol discriminative stimulus is frequently, although not preclusively, associated with the reduction of voluntary ethanol consumption. The examples of positive correlation are gamma-hydroxybutyrate, possibly memantine and certain serotonergic drugs such as fluoxetine. However, it remains uncertain to what extent the discriminative stimulus of ethanol can be seen as relevant in the understanding of the complex mechanisms of dependence.

UI MeSH Term Description Entries
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000437 Alcoholism A primary, chronic disease with genetic, psychosocial, and environmental factors influencing its development and manifestations. The disease is often progressive and fatal. It is characterized by impaired control over drinking, preoccupation with the drug alcohol, use of alcohol despite adverse consequences, and distortions in thinking, most notably denial. Each of these symptoms may be continuous or periodic. (Morse & Flavin for the Joint Commission of the National Council on Alcoholism and Drug Dependence and the American Society of Addiction Medicine to Study the Definition and Criteria for the Diagnosis of Alcoholism: in JAMA 1992;268:1012-4) Alcohol Abuse,Alcoholic Intoxication, Chronic,Ethanol Abuse,Alcohol Addiction,Alcohol Dependence,Alcohol Use Disorder,Abuse, Alcohol,Abuse, Ethanol,Addiction, Alcohol,Alcohol Use Disorders,Chronic Alcoholic Intoxication,Dependence, Alcohol,Intoxication, Chronic Alcoholic,Use Disorders, Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D018079 Receptors, GABA Cell-surface proteins that bind GAMMA-AMINOBUTYRIC ACID with high affinity and trigger changes that influence the behavior of cells. GABA-A receptors control chloride channels formed by the receptor complex itself. They are blocked by bicuculline and usually have modulatory sites sensitive to benzodiazepines and barbiturates. GABA-B receptors act through G-proteins on several effector systems, are insensitive to bicuculline, and have a high affinity for L-baclofen. GABA Receptors,Receptors, gamma-Aminobutyric Acid,gamma-Aminobutyric Acid Receptors,GABA Receptor,gamma-Aminobutyric Acid Receptor,Receptor, GABA,Receptor, gamma-Aminobutyric Acid,Receptors, gamma Aminobutyric Acid,gamma Aminobutyric Acid Receptor,gamma Aminobutyric Acid Receptors

Related Publications

W Kostowski, and P Bieńkowski
July 1998, Behavioural pharmacology,
W Kostowski, and P Bieńkowski
January 1990, Behavioural pharmacology,
W Kostowski, and P Bieńkowski
August 1992, Yakubutsu, seishin, kodo = Japanese journal of psychopharmacology,
W Kostowski, and P Bieńkowski
January 1981, Psychopharmacology,
W Kostowski, and P Bieńkowski
June 2002, Alcoholism, clinical and experimental research,
W Kostowski, and P Bieńkowski
November 2004, Behavioural pharmacology,
W Kostowski, and P Bieńkowski
January 1993, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
W Kostowski, and P Bieńkowski
November 2005, Brain research,
W Kostowski, and P Bieńkowski
September 2019, Alcoholism, clinical and experimental research,
Copied contents to your clipboard!